Characterization and influence of hydroxyapatite nanopowders on living cells

Przemyslaw Oberbek, Tomasz Bolek, Adrian Chlanda, Seishiro Hirano, Sylwia Kusnieruk, Julia Rogowska-Tylman, Ganna Nechyporenko, Viktor Zinchenko, Wojciech Swieszkowski and Tomasz Puzyn
Beilstein J. Nanotechnol. 2018, 9, 3079–3094. https://doi.org/10.3762/bjnano.9.286

Cite the Following Article

Characterization and influence of hydroxyapatite nanopowders on living cells
Przemyslaw Oberbek, Tomasz Bolek, Adrian Chlanda, Seishiro Hirano, Sylwia Kusnieruk, Julia Rogowska-Tylman, Ganna Nechyporenko, Viktor Zinchenko, Wojciech Swieszkowski and Tomasz Puzyn
Beilstein J. Nanotechnol. 2018, 9, 3079–3094. https://doi.org/10.3762/bjnano.9.286

How to Cite

Oberbek, P.; Bolek, T.; Chlanda, A.; Hirano, S.; Kusnieruk, S.; Rogowska-Tylman, J.; Nechyporenko, G.; Zinchenko, V.; Swieszkowski, W.; Puzyn, T. Beilstein J. Nanotechnol. 2018, 9, 3079–3094. doi:10.3762/bjnano.9.286

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mani, S. R.; Valliappan, M. S.; Dhandapani, D.; Desamuthu, G.; Ravichandran, M.; Babu, B.; Kandhasamy, S. Environmentally sustainable green synthesis of novel nano-hydroxyapatite derived from Sesbania grandiflora leaf and Sesamum indicum seed: In Vitro evaluation for dental restorative applications. Next Materials 2025, 8, 100828. doi:10.1016/j.nxmate.2025.100828
  • Shan, E.; Chamorro, C.; Ferrández-Montero, A.; Martin-Rodriguez, R. M.; Ferrari, B.; Sanchez-Herencia, A. J.; Virto, L.; Marín, M. J.; Figuero, E.; Sanz, M. In Vitro Biological Properties Assessment of 3D-Printed Hydroxyapatite-Polylactic Acid Scaffolds Intended for Bone Regeneration. Journal of functional biomaterials 2025, 16, 218. doi:10.3390/jfb16060218
  • Valenzuela, E. I.; Sánchez-Urzúa, J. M.; Mendoza, P. G. y.; Navarro-Márquez, M.; Zayas-Olivares, A.; Gutiérrez-Uribe, J. A.; Ortega-Lara, W.; Cervantes-Avilés, P. Recovery of calcium from maize Lime-Cooking wastewater as hydroxyapatite for biomedical applications. Separation and Purification Technology 2025, 365, 132777. doi:10.1016/j.seppur.2025.132777
  • Diputra, A. H.; Hariscandra Dinatha, I. K.; Yusuf, Y. A comparative X-ray diffraction analysis of Sr2+substituted hydroxyapatite from sand lobster shell waste using various methods. Heliyon 2025, 11, e41781. doi:10.1016/j.heliyon.2025.e41781
  • Vergel Rangel, A.; Ezquerra Riega, S. D.; Gómez Velázquez, L. S.; Rodríguez, H. B.; Mercado Castro, D. F.; Dell'Arciprete, M. L. Tuning the Structural Properties of Hydroxyapatite Nanoparticles Through Silica /Alendronate Assistance for Methylene Blue Adsorption. Elsevier BV 2025. doi:10.2139/ssrn.5243469
  • Mohd Zaffarin, A. S.; Ng, S.-F.; Ng, M. H.; Hassan, H.; Alias, E. Development and Optimization of Nano-Hydroxyapatite Encapsulating Tocotrienol-Rich Fraction Formulation Using Response Surface Methodology. Pharmaceutics 2024, 17, 10. doi:10.3390/pharmaceutics17010010
  • Nisar, S. S.; Choe, H.-C. TiO2 coatings doped with MoS2 nanoparticles using plasma electrolytic oxidation on Ti–6Al–4V alloy: Application for enhanced and functional bio-implant surface. Journal of Materials Research and Technology 2024, 33, 2035–2056. doi:10.1016/j.jmrt.2024.09.185
  • Nobakhti, S. Nano-scale modeling of energy dissipation in a single lamella reveals the significant contribution of collagen-mineral sliding to intrinsic bone toughness. Mechanics of Advanced Materials and Structures 2024, 1–20. doi:10.1080/15376494.2024.2395506
  • Akhmetshina, T.; Schäublin, R. E.; Rich, A. M.; Berger, L.; Zeng, P.; Rodriguez‐Fernandez, I.; Phillips, N. W.; Löffler, J. F. Quantitative Imaging of Magnesium Biodegradation by 3D X‐Ray Ptychography and Electron Microscopy. Advanced Functional Materials 2024, 34. doi:10.1002/adfm.202408869
  • Skierbiszewska, K.; Szałaj, U.; Turek, B.; Sych, O.; Jasiński, T.; Łojkowski, W.; Domino, M. Radiological properties of nano-hydroxyapatite compared to natural equine hydroxyapatite quantified using dual-energy CT and high-field MR. Nanomedicine : nanotechnology, biology, and medicine 2024, 61, 102765. doi:10.1016/j.nano.2024.102765
  • Ibrahim, A. Z.; Hussein, A. S.; Said Gulam Khan, H. B.; Ghazali, N. Antibacterial activity of microwave synthesized hydroxyapatite against cariogenic bacteria: A preliminary study. The Saudi dental journal 2024, 36, 1117–1122. doi:10.1016/j.sdentj.2024.06.004
  • Nisar, S. S.; Choe, H.-C. Mechanical hydroxyapatite coatings on PEO-treated Ti–6Al–4V alloy for enhancing implant's surface bioactivity. Ceramics International 2024, 50, 17703–17719. doi:10.1016/j.ceramint.2024.02.259
  • Neel, E. A. A.; El-Damanhoury, H. M.; Hossain, K. M. Z.; Alawadhi, H.; ALMisned, G.; Tekin, H. O. An assessment of microstructure, dentinal tubule occlusion and X-ray attenuation properties of Nd:YAG laser-enhanced titanium-doped phosphate glass and nano-hydroxyapatite pastes. Applied Physics A 2024, 130. doi:10.1007/s00339-024-07487-7
  • Fotoohi, M.; Hayati, R.; Mohassel, A.; Setoudeh, N. A brief study of electrical and biological properties of BNT6BT/ZnO-HA Composite. Journal of Alloys and Compounds 2024, 980, 173523. doi:10.1016/j.jallcom.2024.173523
  • Castillo-Borja, F.; Bravo-Sánchez, U. I. Aluminum adsorption using different models of hydroxyapatite via Molecular Dynamic simulations. Journal of Molecular Liquids 2024, 395, 123899. doi:10.1016/j.molliq.2023.123899
  • Wang, X.; Huang, S.; Peng, Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering (Basel, Switzerland) 2023, 10, 1367. doi:10.3390/bioengineering10121367
  • Hazra, A.; Baradwaj, G.; Dhanu, A. S.; Kuppannan, G.; Arthanari, M.; Kanthesh, B. M. Green Methods for the Development of Bone and Tissue Engineering-Based Biomaterials. Engineering Materials; Springer Nature Singapore, 2023; pp 73–93. doi:10.1007/978-981-99-6698-1_3
  • Lin, Y.; Balbaa, M.; Zeng, W.; Yang, Y.; Mahmoud, D.; Elbestawi, M.; Deng, F.; Chen, J. Osteogenic Properties of Titanium Alloy Ti6Al4V-Hydroxyapatite Composites Fabricated by Selective Laser Melting. Journal of Materials Engineering and Performance 2023, 33, 9664–9675. doi:10.1007/s11665-023-08632-8
  • Liu, X.; Liu, Y.; Qiang, L.; Ren, Y.; Lin, Y.; Li, H.; Chen, Q.; Gao, S.; Yang, X.; Zhang, C.; Fan, M.; Zheng, P.; Li, S.; Wang, J. Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment. Journal of tissue engineering 2023, 14, 20417314231170371. doi:10.1177/20417314231170371
  • Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Springer Science and Business Media LLC 2023. doi:10.21203/rs.3.rs-2868379/v3
Other Beilstein-Institut Open Science Activities