Characterization and influence of hydroxyapatite nanopowders on living cells

Przemyslaw Oberbek, Tomasz Bolek, Adrian Chlanda, Seishiro Hirano, Sylwia Kusnieruk, Julia Rogowska-Tylman, Ganna Nechyporenko, Viktor Zinchenko, Wojciech Swieszkowski and Tomasz Puzyn
Beilstein J. Nanotechnol. 2018, 9, 3079–3094. https://doi.org/10.3762/bjnano.9.286

Cite the Following Article

Characterization and influence of hydroxyapatite nanopowders on living cells
Przemyslaw Oberbek, Tomasz Bolek, Adrian Chlanda, Seishiro Hirano, Sylwia Kusnieruk, Julia Rogowska-Tylman, Ganna Nechyporenko, Viktor Zinchenko, Wojciech Swieszkowski and Tomasz Puzyn
Beilstein J. Nanotechnol. 2018, 9, 3079–3094. https://doi.org/10.3762/bjnano.9.286

How to Cite

Oberbek, P.; Bolek, T.; Chlanda, A.; Hirano, S.; Kusnieruk, S.; Rogowska-Tylman, J.; Nechyporenko, G.; Zinchenko, V.; Swieszkowski, W.; Puzyn, T. Beilstein J. Nanotechnol. 2018, 9, 3079–3094. doi:10.3762/bjnano.9.286

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Nisar, S. S.; Choe, H.-C. Mechanical hydroxyapatite coatings on PEO-treated Ti–6Al–4V alloy for enhancing implant's surface bioactivity. Ceramics International 2024. doi:10.1016/j.ceramint.2024.02.259
  • Castillo-Borja, F.; Bravo-Sánchez, U. I. Aluminum adsorption using different models of hydroxyapatite via Molecular Dynamic simulations. Journal of Molecular Liquids 2024, 395, 123899. doi:10.1016/j.molliq.2023.123899
  • Fotoohi, M.; Hayati, R.; Mohassel, A.; Setoudeh, N. A brief study of electrical and biological properties of BNT6BT/ZnO-HA Composite. Journal of Alloys and Compounds 2024, 980, 173523. doi:10.1016/j.jallcom.2024.173523
  • Wang, X.; Huang, S.; Peng, Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering (Basel, Switzerland) 2023, 10, 1367. doi:10.3390/bioengineering10121367
  • Hazra, A.; Baradwaj, G.; Dhanu, A. S.; Kuppannan, G.; Arthanari, M.; Kanthesh, B. M. Green Methods for the Development of Bone and Tissue Engineering-Based Biomaterials. Engineered Biomaterials; Springer Nature Singapore, 2023; pp 73–93. doi:10.1007/978-981-99-6698-1_3
  • Lin, Y.; Balbaa, M.; Zeng, W.; Yang, Y.; Mahmoud, D.; Elbestawi, M.; Deng, F.; Chen, J. Osteogenic Properties of Titanium Alloy Ti6Al4V-Hydroxyapatite Composites Fabricated by Selective Laser Melting. Journal of Materials Engineering and Performance 2023. doi:10.1007/s11665-023-08632-8
  • Liu, X.; Liu, Y.; Qiang, L.; Ren, Y.; Lin, Y.; Li, H.; Chen, Q.; Gao, S.; Yang, X.; Zhang, C.; Fan, M.; Zheng, P.; Li, S.; Wang, J. Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment. Journal of tissue engineering 2023, 14, 20417314231170371–204173142311703. doi:10.1177/20417314231170371
  • Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v3
  • Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v1
  • Łojkowski, M.; Walejewska, E.; Sosnowska, M.; Opalińska, A.; Grubczak, K.; Jaworski, S.; Moniuszko, M.; Swieszkowski, W. Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2868379/v2
  • Osuchukwu, O. A.; Salihi, A.; Abdullahi, I.; Etinosa, P. O.; Obada, D. O. A comparative study of the mechanical properties of sol-gel derived hydroxyapatite produced from a novel mixture of two natural biowastes for biomedical applications. Materials Chemistry and Physics 2023, 297, 127434. doi:10.1016/j.matchemphys.2023.127434
  • Zhong, X.; Hu, W.; Hu, X.; Wang, H.; Liu, F.; Yang, Y. Biogenic hydroxyapatite synthesis by Bacillus subtilis: An efficient passivator for the reduction of cadmium contamination in agricultural soil. The Canadian Journal of Chemical Engineering 2023, 101, 4385–4394. doi:10.1002/cjce.24775
  • Hernández-Moreno, D.; Navas, J. M.; Fernández-Cruz, M. L. Short and long-term effects of nanobiomaterials in fish cell lines. Applicability of RTgill-W1. Chemosphere 2022, 309, 136636. doi:10.1016/j.chemosphere.2022.136636
  • Hossain, M. S.; Hasan, M. M.; Mahmud, M.; Mobarak, M. B.; Ahmed, S. Assessment of crystallite size of UV-synthesized hydroxyapatite using different model equations. Chemical Papers 2022, 77, 463–471. doi:10.1007/s11696-022-02501-9
  • Ansari, M. J.; Rajendran, R. R.; Mohanto, S.; Agarwal, U.; Panda, K.; Dhotre, K.; Manne, R.; Deepak, A.; Zafar, A.; Yasir, M.; Pramanik, S. Poly(N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels (Basel, Switzerland) 2022, 8, 454. doi:10.3390/gels8070454
  • Singh, A.; Kumar, S.; Acharya, T. K.; Goswami, C.; Goswami, L. Application of nanohydroxyapatite-polysaccharide based biomaterial for bone cell mineralization in tissue engineering. Materials Today Communications 2022, 31, 103783. doi:10.1016/j.mtcomm.2022.103783
  • Pancewicz, J.; Niklińska, W. E.; Chlanda, A. Flake Graphene-Based Nanomaterial Approach for Triggering a Ferroptosis as an Attractive Theranostic Outlook for Tackling Non-Small Lung Cancer: A Mini Review. Materials (Basel, Switzerland) 2022, 15, 3456. doi:10.3390/ma15103456
  • Sodhani, H.; Hedaoo, S.; Murugesan, G.; Pai, S.; Vinayagam, R.; Varadavenkatesan, T.; Bharath, G.; Haija, M. A.; Nadda, A. K.; Govarthanan, M.; Selvaraj, R. Adsorptive removal of Acid Blue 113 using hydroxyapatite nanoadsorbents synthesized using Peltophorum pterocarpum pod extract. Chemosphere 2022, 299, 134752. doi:10.1016/j.chemosphere.2022.134752
  • Fang, C.-H.; Sun, C.-K.; Lin, Y.-W.; Hung, M.-C.; Lin, H.-Y.; Li, C.-H.; Lin, I.-P.; Chang, H.-C.; Sun, J.-S.; Chang, J. Z.-C. Metformin-Incorporated Gelatin/Nano-Hydroxyapatite Scaffolds Promotes Bone Regeneration in Critical Size Rat Alveolar Bone Defect Model. International journal of molecular sciences 2022, 23, 558. doi:10.3390/ijms23010558
  • Rajabiyan, A.; Shakiba Maram, N.; Ghatrami, E. R.; Zarei Ahmady, A. Preparation of magnetic methotrexate nanocarrier coated with extracted hydroxyapatite of sea urchin (Echinometra mathaei). Main Group Chemistry 2021, 20, 447–461. doi:10.3233/mgc-210043
Other Beilstein-Institut Open Science Activities