Cite the Following Article
Engineering of oriented carbon nanotubes in composite materials
Razieh Beigmoradi, Abdolreza Samimi and Davod Mohebbi-Kalhori
Beilstein J. Nanotechnol. 2018, 9, 415–435.
https://doi.org/10.3762/bjnano.9.41
How to Cite
Beigmoradi, R.; Samimi, A.; Mohebbi-Kalhori, D. Beilstein J. Nanotechnol. 2018, 9, 415–435. doi:10.3762/bjnano.9.41
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.5 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Wang, X.; Jin, C.; Bai, Z. Review of carbon nanotube-based flexible wearable strain sensors: From materials to applications for human body. Sensors and Actuators A: Physical 2025, 395, 117071. doi:10.1016/j.sna.2025.117071
- Babar, A. B.; Sahoo, R. Static, Buckling, and Free Vibration Analysis of CNT Reinforced Composite Beams with Elastic Foundation Using IHSDT. Journal of Vibration Engineering & Technologies 2024, 12, 8131–8150. doi:10.1007/s42417-024-01349-5
- Babar, A.; Sahoo, R. Static, buckling, and free vibration responses of functionally graded carbon nanotube-reinforced composite beams with elastic foundation in non-polynomial framework. The Journal of Strain Analysis for Engineering Design 2024, 59, 366–383. doi:10.1177/03093247241234707
- Babar, A. B.; Sahoo, R. A non-polynomial axiomatic framework to investigate the structural responses of CNT-reinforced beams: An analytical solution. Archive of Applied Mechanics 2024, 94, 883–901. doi:10.1007/s00419-024-02553-1
- Park, C.; Lee, B.; Kim, J.; Lee, H.; Kang, J.; Yoon, J.; Song, C.; Ban, J.; Yeon, P.; Lee, Y. T.; Kim, M.-g.; Cho, S. J. Material and structural approaches for human-machine interfaces. Smart and Connected Wearable Electronics; Elsevier, 2024; pp 227–290. doi:10.1016/b978-0-323-99147-6.00009-0
- Rashed, A. O.; Huynh, C.; Merenda, A.; Rodriguez-Andres, J.; Kong, L.; Kondo, T.; Razal, J. M.; Dumée, L. F. Dry-spun carbon nanotube ultrafiltration membranes tailored by anti-viral metal oxide coatings for human coronavirus 229E capture in water. Journal of environmental chemical engineering 2023, 11, 110176. doi:10.1016/j.jece.2023.110176
- Abdulhameed, A.; Halim, M. M.; Halin, I. A. Dielectrophoretic alignment of carbon nanotubes: theory, applications, and future. Nanotechnology 2023, 34, 242001. doi:10.1088/1361-6528/acc46c
- Rashed, A. O.; Huynh, C.; Merenda, A.; Qin, S.; Maghe, M.; Kong, L.; Kondo, T.; Razal, J. M.; Dumée, L. F. Electrocatalytic ultrafiltration membrane reactors designed from dry-spun self-standing carbon nanotube sheets. Chemical Engineering Journal 2023, 458, 141517. doi:10.1016/j.cej.2023.141517
- Mohamed, M. G.; Mousa, A. A.; Mazrouaa, A. M. doi:10.1002/9783527838790.ch5
- Haber, G. E.; Noel, L.; Lin, C. F.; Gree, S.; Vidal, L.; Zan, H.-W.; Hobeika, N.; Lhost, O.; Trolez, Y.; Soppera, O. Near-Infrared Laser Direct Writing of Conductive Patterns on the Surface of Carbon Nanotube Polymer Nanocomposites. ACS applied materials & interfaces 2021, 13, 49279–49287. doi:10.1021/acsami.1c12757
- Campa-Siqueiros, P. I.; Madera-Santana, T. J.; Castillo-Ortega, M.; López-Cervantes, J.; Ayala-Zavala, J. F.; Ortiz-Vázquez, E. Electrospun and co-electrospun biopolymer nanofibers for skin wounds on diabetic patients: an overview. RSC advances 2021, 11, 15340–15350. doi:10.1039/d1ra02986j
- Abdulhameed, A.; Wahab, N. Z. A.; Mohtar, M. N.; Hamidon, M. N.; Shafie, S.; Halin, I. A. Methods and Applications of Electrical Conductivity Enhancement of Materials Using Carbon Nanotubes. Journal of Electronic Materials 2021, 50, 3207–3221. doi:10.1007/s11664-021-08928-2
- Makgabutlane, B.; Nthunya, L. N.; Maubane-Nkadimeng, M. S.; Mhlanga, S. D. Green synthesis of carbon nanotubes to address the water-energy-food nexus: A critical review. Journal of Environmental Chemical Engineering 2021, 9, 104736. doi:10.1016/j.jece.2020.104736
- Kolanowska, A.; Herman, A. P.; Jędrysiak, R.; Boncel, S. Carbon nanotube materials for electrocardiography. RSC advances 2021, 11, 3020–3042. doi:10.1039/d0ra08679g
- Beigmoradi, R.; Samimi, A.; Mohebbi-Kalhori, D. Controllability of the hydrophilic or hydrophobic behavior of the modified polysulfone electrospun nanofiber mats. Polymer Testing 2021, 93, 106970. doi:10.1016/j.polymertesting.2020.106970
- El-Ashmawy, A. M.; Xu, Y. Combined effect of carbon nanotubes distribution and orientation on functionally graded nanocomposite beams using finite element analysis. Materials Research Express 2021, 8, 015012. doi:10.1088/2053-1591/abc773
- Bodík, M.; Kováčová, M.; Banovska, S.; Spitalsky, Z.; Held, V.; Jergel, M.; Majkova, E.; Siffalovic, P. Uniaxial strengthening of the polyamide film by the aligned carbon nanotubes. Materials Today Communications 2020, 25, 101432. doi:10.1016/j.mtcomm.2020.101432
- Basha, I.; Aziz, A.; Maslehuddin, M.; Ahmad, S.; Hakeem, A. S.; Rahman, M. M. Characterization, Processing, and Application of Heavy Fuel Oil Ash, an Industrial Waste Material - A Review. Chemical record (New York, N.Y.) 2020, 20, 1568–1595. doi:10.1002/tcr.202000100
- Zhakina, A. K.; Vassilets, Y. P.; Arnt, O.; Kudryavtseva, Y. V.; Zhivotova, T. S.; Gazaliev, A. M.; Muldakhmetov, Z. Synthesis and Properties of a Nanocomposite Material Based on a Product of Coal Waste Processing. Solid Fuel Chemistry 2020, 54, 274–279. doi:10.3103/s0361521920050109
- Papageorgiou, D. G.; Li, Z.; Liu, M.; Kinloch, I. A.; Young, R. J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 2020, 12, 2228–2267. doi:10.1039/c9nr06952f