Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

Nagamalai Vasimalai, Vânia Vilas-Boas, Juan Gallo, María de Fátima Cerqueira, Mario Menéndez-Miranda, José Manuel Costa-Fernández, Lorena Diéguez, Begoña Espiña and María Teresa Fernández-Argüelles
Beilstein J. Nanotechnol. 2018, 9, 530–544. https://doi.org/10.3762/bjnano.9.51

Supporting Information

Supporting Information features emission spectra of cinnamon, red chilli and turmeric C-dots, as well as cell viability studies and ESI-QTOF spectra of black pepper C-dots and piperine standard.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 764.7 KB Download

Cite the Following Article

Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition
Nagamalai Vasimalai, Vânia Vilas-Boas, Juan Gallo, María de Fátima Cerqueira, Mario Menéndez-Miranda, José Manuel Costa-Fernández, Lorena Diéguez, Begoña Espiña and María Teresa Fernández-Argüelles
Beilstein J. Nanotechnol. 2018, 9, 530–544. https://doi.org/10.3762/bjnano.9.51

How to Cite

Vasimalai, N.; Vilas-Boas, V.; Gallo, J.; Cerqueira, M. d. F.; Menéndez-Miranda, M.; Costa-Fernández, J. M.; Diéguez, L.; Espiña, B.; Fernández-Argüelles, M. T. Beilstein J. Nanotechnol. 2018, 9, 530–544. doi:10.3762/bjnano.9.51

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 934.2 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Jovanović, S.; Marković, Z.; Budimir, M.; Prekodravac, J.; Zmejkoski, D.; Kepić, D.; Bonasera, A.; Marković, B. T. Lights and Dots toward Therapy—Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023, 15, 1170. doi:10.3390/pharmaceutics15041170
  • Aghazadeh, H.; Taheri, P.; Aboulhassanzadeh, S.; Aboulhassanzadeh, S.; Sangchooli, T.; Hazrati Dorigh, B.; Farmani Gheshlaghi, E. An herbal bioactive drug compound with a delayed release curve in PEGylated cationic nano-niosomes formulation. Biocatalysis and Agricultural Biotechnology 2023, 102704. doi:10.1016/j.bcab.2023.102704
  • Hui, S. Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. Journal of Nanoparticle Research 2023, 25. doi:10.1007/s11051-023-05701-w
  • López-Beltrán, A.; Iriarte-Mesa, C.; Murru, C.; Chao-Mujica, F. J.; Corcho-Valdés, A. L.; Morales-Álvarez, L.; Desdín-García, L. F.; Deschamps, J.; Antuch, M. Design of Fluorescent Carbon Dots (CDs) for the Selective detection of Metal-Containing Ions. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, e202300188. doi:10.1002/chem.202300188
  • Baig, M. S.; Suryawanshi, R. M.; Zehravi, M.; Mahajan, H. S.; Rana, R.; Banu, A.; Subramanian, M.; Kaundal, A. K.; Puri, S.; Siddiqui, F. A.; Sharma, R.; Khan, S. L.; Chen, K.-T.; Emran, T. B. Surface decorated quantum dots: Synthesis, properties and role in herbal therapy. Frontiers in cell and developmental biology 2023, 11, 1139671. doi:10.3389/fcell.2023.1139671
  • Hatimuria, M.; Phukan, P.; Bag, S.; Ghosh, J.; Gavvala, K.; Pabbathi, A.; Das, J. Green Carbon Dots: Applications in Development of Electrochemical Sensors, Assessment of Toxicity as Well as Anticancer Properties. Catalysts 2023, 13, 537. doi:10.3390/catal13030537
  • Rajapandi, S.; Pandeeswaran, M.; Jesuraj, D.; Kousalya, G. Synthesis of Green fluorescent Nitrogen doped Vitis vinifera derived Carbon dots and their in-vitro antimicrobial studies. Journal of Molecular Structure 2023, 1275, 134660. doi:10.1016/j.molstruc.2022.134660
  • Wei, Y.; Gao, Y.; Chen, L.; Li, Q.; Du, J.; Wang, D.; Ren, F.; Liu, X.; Yang, Y. Carbon dots based on targeting unit inheritance strategy for Golgi apparatus-targeting imaging. Frontiers of Materials Science 2023, 17. doi:10.1007/s11706-023-0627-y
  • Msto, R. K.; Othman, H. O.; Al-Hashimi, B. R.; Salahuddin Ali, D.; Hassan, D. H.; Hassan, A. Q.; Smaoui, S. Fluorescence Turns on-off-on Sensing of Ferric Ion and L-Ascorbic Acid by Carbon Quantum Dots. Journal of Food Quality 2023, 2023, 1–9. doi:10.1155/2023/5555608
  • Mozdbar, A.; Nouralishahi, A.; Fatemi, S.; Talatori, F. S. The impact of Carbon Quantum Dots (CQDs) on the photocatalytic activity of TiO2 under UV and visible light. Journal of Water Process Engineering 2023, 51, 103465. doi:10.1016/j.jwpe.2022.103465
  • Tang, X.-D.; Yu, H.-M.; Nguyen, W.; Amador, E.; Cui, S.-P.; Ma, K.; Chen, M.-L.; Wang, S.-Y.; Hu, Z.-Z.; Chen, W. New Observations on Concentration‐Regulated Carbon Dots. Advanced Photonics Research 2023, 4, 2200314. doi:10.1002/adpr.202200314
  • Ahmad, M. A.; Aung, Y.-Y.; Widati, A. A.; Sakti, S. C. W.; Sumarsih, S.; Irzaman, I.; Yuliarto, B.; Chang, J.-Y.; Fahmi, M. Z. A Perspective on Using Organic Molecules Composing Carbon Dots for Cancer Treatment. Nanotheranostics 2023, 7, 187–201. doi:10.7150/ntno.80076
  • Qasim, M.; Clarkson, A. N.; Hinkley, S. F. R. Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. International journal of molecular sciences 2023, 24, 1023. doi:10.3390/ijms24021023
  • Mogharbel, A. T.; Abu-Melha, S.; Hameed, A.; M. S. Attar, R.; Alrefaei, A. F.; Almahri, A.; El-Metwaly, N. Anticancer and microbicide action of carbon quantum dots derived from microcrystalline cellulose: Hydrothermal versus infrared assisted techniques. Arabian Journal of Chemistry 2023, 16, 104419. doi:10.1016/j.arabjc.2022.104419
  • Lad, U. M.; Modi, C. K. Multicolor carbon dots for imaging applications. Carbon Dots in Analytical Chemistry; Elsevier, 2023; pp 305–317. doi:10.1016/b978-0-323-98350-1.00013-x
  • Kumari, A.; Bhattacharya, J.; Moulick, R. G. Bioimaging applications of carbon quantum dots. Carbon Quantum Dots for Sustainable Energy and Optoelectronics; Elsevier, 2023; pp 239–261. doi:10.1016/b978-0-323-90895-5.00001-1
  • Banerjee, S. Carbon quantum dots: An overview and potential applications in terahertz domain. Carbon Quantum Dots for Sustainable Energy and Optoelectronics; Elsevier, 2023; pp 397–421. doi:10.1016/b978-0-323-90895-5.00002-3
  • Emam, H. E.; El-Shahat, M.; Allayeh, A. K.; Ahmed, H. B. Functionalized starch for formulation of graphitic carbon nanodots as viricidal/anticancer laborers. Biocatalysis and Agricultural Biotechnology 2023, 47, 102577. doi:10.1016/j.bcab.2022.102577
  • Xing, D.; Koubaa, A.; Tao, Y.; Magdouli, S.; Li, P.; Bouafif, H.; Zhang, J. Copper-Doped Carbon Nanodots with Superior Photocatalysis, Directly Obtained from Chromium-Copper-Arsenic-Treated Wood Waste. Polymers 2022, 15, 136. doi:10.3390/polym15010136
  • Hussain, A.; Attique, F.; Naqvi, S. A. R.; Ali, A.; Ibrahim, M.; Hussain, H.; Zafar, F.; Iqbal, R. S.; Ayub, M. A.; Assiri, M. A.; Imran, M.; Ullah, S. Nanoformulation of Curcuma longa Root Extract and Evaluation of Its Dissolution Potential. ACS omega 2022, 8, 1088–1096. doi:10.1021/acsomega.2c06258

Patents

  • ZHOU NINGLIN; SONG QIUXIAN; SHEN JIAN; ZHANG QICHENG; SUN BAOHONG; SHI SHAOZE; XU WANG; LU TINGYU. Carbon quantum dot with Pericarpium Zanthoxyli as carbon source as well as preparation method and application of carbon quantum dot. CN 113025318 A, June 25, 2021.
Other Beilstein-Institut Open Science Activities