Supporting Information
Supporting Information features emission spectra of cinnamon, red chilli and turmeric C-dots, as well as cell viability studies and ESI-QTOF spectra of black pepper C-dots and piperine standard.
| Supporting Information File 1: Additional experimental data. | ||
| Format: PDF | Size: 764.7 KB | Download |
Cite the Following Article
Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition
Nagamalai Vasimalai, Vânia Vilas-Boas, Juan Gallo, María de Fátima Cerqueira, Mario Menéndez-Miranda, José Manuel Costa-Fernández, Lorena Diéguez, Begoña Espiña and María Teresa Fernández-Argüelles
Beilstein J. Nanotechnol. 2018, 9, 530–544.
https://doi.org/10.3762/bjnano.9.51
How to Cite
Vasimalai, N.; Vilas-Boas, V.; Gallo, J.; Cerqueira, M. d. F.; Menéndez-Miranda, M.; Costa-Fernández, J. M.; Diéguez, L.; Espiña, B.; Fernández-Argüelles, M. T. Beilstein J. Nanotechnol. 2018, 9, 530–544. doi:10.3762/bjnano.9.51
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 934.2 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Al-Otaify, A. Sub-hour pulsed laser ablation synthesis of dual-emissive carbon nanoparticles from lemon leaves. Applied Physics A 2025, 131. doi:10.1007/s00339-025-08992-z
- Dahiya, B.; Narwal, S.; Singh, A.; Sura, A.; Singh, A.; Sehrawat, V.; Nain, S. Carbon-Based Nanocomposites for Ecological Surveillance. Lecture Notes in Nanoscale Science and Technology; Springer Nature Switzerland, 2025; pp 275–293. doi:10.1007/978-3-031-96895-2_13
- Lyu, J. S.; Park, K. W.; Han, J. Unveiling the utilization of biowaste-derived carbon nanodots as texture modifiers in extrusion-cooked soy-protein-based high-moisture meat analogs. Food Hydrocolloids 2025, 172, 111977. doi:10.1016/j.foodhyd.2025.111977
- Kakkar, S.; Jha, R. K.; Hattila, D.; Singh, A. K.; Shukla, P. K.; Yadav, S. P. S.; Meena, A. S. Plant-Derived Natural Product-Based Nanoformulations for Healthcare Application. Nanotheranostics 2025, 9, 262–279. doi:10.7150/ntno.113606
- Vilas-Boas, V.; Arnesdotter, E.; Carvalho, F.; Alfaro-Moreno, E. Methodological Considerations for Setting Up Human-Relevant In Vitro Nanotoxicology Experiments—A Practical Guide. Nanosafety; Springer Nature Switzerland, 2025; pp 27–53. doi:10.1007/978-3-031-93871-9_2
- Romero, M. P.; Lagos, K. J.; Cuadrado, C. F.; Garzón-Romero, C. C.; Salazar, M. A.; Solorzano, G.; Gardener, J. A.; González, M. A.; Rivera, M. Antibacterial and Antitumor Application of Carbon Dots Based on Natural Products for Photodynamic/Photothermal Effects. International journal of nanomedicine 2025, 20, 7893–7914. doi:10.2147/ijn.s507574
- Alqahtani, A. M.; Alharbi, H.; Alqarni, S. A.; Ashour, G. R. S.; Ageeli, A. A.; Almutairi, H. H.; Alomari, K. B.; El-Metwaly, N. M. Biopolymers Blend for Microwave-Synthesized Carbon Dots and Iodine Entrapping for Potential Biomedical Bandages. Fibers and Polymers 2025, 26, 3317–3334. doi:10.1007/s12221-025-01028-6
- Warjurkar, K.; Patyal, R.; Sharma, V. Multifunctional Tradescantia pallida Derived Copper-Nitrogen Codoped Green Carbon Dots as Nanozyme, Dual Sensor, and Fluorescent Ink for Anticounterfeiting and Smart Textiles. ACS applied bio materials 2025, 8, 4779–4790. doi:10.1021/acsabm.5c00150
- Zhang, G.; Chen, B.; Wang, T.; Ning, W.; Du, B.; Lv, J.; Guo, J.; Yang, C.; Li, J.; Liu, S.; Chen, Z.; Li, S.; Yang, C. Nitrogen-doped carbon dots enhanced pollutant degradation and bioelectricity generation in bioelectrochemical systems. Journal of Environmental Chemical Engineering 2025, 13, 115451. doi:10.1016/j.jece.2025.115451
- Kudelkina, V. V.; Musaeva, D. U.; Syu, A. V.; Kopylov, A. N.; Kosyreva, A. M.; Alekseeva, A. I.; Makarova, O. V.; Timoshenko, V. Y. The Effect of Poloxamer Coating on the Toxicity of Carbon Dots in Glioblastoma and Embryonic Kidney Models In Vitro. Bulletin of experimental biology and medicine 2025, 178, 491–495. doi:10.1007/s10517-025-06362-6
- Araújo-Silva, H.; Martins, B.; Cerqueira, F.; Gonçalves, H.; Machado, R.; Gomes, A. C.; Lúcio, M. Novel nanographene oxide conjugates as stimuli-responsive theranostic tool for cancer. Materials Today Chemistry 2025, 44, 102552. doi:10.1016/j.mtchem.2025.102552
- Zheng, J.-Q.; Yan, M.; Jiang, H.-J.; Yin, T.-P. Carbon dots derived from corn silk and their antimicrobial properties. Food & Medicine Homology 2025. doi:10.26599/fmh.2026.9420094
- Mohammad Nejad Khiavi, N.; Sowti Khiabani, M.; Rezaei Mokarram, R.; Hamishekar, H.; Samadi Kafil, H. Green synthesis of carbon quantum dots (CQDs) from butternut squash (Cucurbita moschata) peel waste: characterization, antibacterial and antioxidant activity. Biomass Conversion and Biorefinery 2025, 15, 18133–18144. doi:10.1007/s13399-025-06505-9
- Tripti; Singh, P.; Rani, S.; Singh, S.; Kumar, L.; Gupta, V.; Kumar, S.; Kumar, P. Investigation of Magnetism and Photocatalytic Activity Using Biomass‐Derived Carbon Dots. ChemistrySelect 2025, 10. doi:10.1002/slct.202402585
- Inoue, K.; Suzuki, R.; Kaneda, Y.; Tanimura, M.; Shinozaki, K.; Tachibana, M. Effects of pyrolysis temperature on plant-seed-derived carbon dots. Journal of Materials Chemistry C 2025. doi:10.1039/d5tc03150h
- Mathew, J.; Mathew, B. Green synthesized fluorescent carbon nanoparticles and their applications. Fluorescent Carbon Nanoparticles; Elsevier, 2025; pp 129–183. doi:10.1016/b978-0-443-13591-0.00007-3
- Kidangayil Sali, A.; Thomas, S. Synthesis of carbon nanomaterials from vegetables. Nanostructured Carbon Materials from Plant Extracts; Elsevier, 2025; pp 77–100. doi:10.1016/b978-0-323-95126-5.00025-1
- Ahmed, H. B.; Emam, H. E.; Shaheen, T. I. Fluorescent antimicrobial hydrogel based on fluorophore N-doped carbon dots originated from cellulose nanocrystals. Scientific reports 2024, 14, 29226. doi:10.1038/s41598-024-80222-7
- Dhumal, P.; Chakraborty, S.; Ibrahim, B.; Kaur, M.; Valsami-Jones, E. Green-synthesised carbon nanodots: A SWOT analysis for their safe and sustainable innovation. Journal of Cleaner Production 2024, 480, 144115. doi:10.1016/j.jclepro.2024.144115
- Docrat, T. F.; Eltahir, A. O. E.; Hussein, A. A.; Marnewick, J. L. Green synthesis of metal nanocarriers: A perspective for targeting glioblastoma. Drug discovery today 2024, 29, 104219. doi:10.1016/j.drudis.2024.104219
Patents
- ZHOU NINGLIN; SONG QIUXIAN; SHEN JIAN; ZHANG QICHENG; SUN BAOHONG; SHI SHAOZE; XU WANG; LU TINGYU. Carbon quantum dot with Pericarpium Zanthoxyli as carbon source as well as preparation method and application of carbon quantum dot. CN 113025318 A, June 25, 2021.