Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

Nagamalai Vasimalai, Vânia Vilas-Boas, Juan Gallo, María de Fátima Cerqueira, Mario Menéndez-Miranda, José Manuel Costa-Fernández, Lorena Diéguez, Begoña Espiña and María Teresa Fernández-Argüelles
Beilstein J. Nanotechnol. 2018, 9, 530–544. https://doi.org/10.3762/bjnano.9.51

Supporting Information

Supporting Information features emission spectra of cinnamon, red chilli and turmeric C-dots, as well as cell viability studies and ESI-QTOF spectra of black pepper C-dots and piperine standard.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 764.7 KB Download

Cite the Following Article

Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition
Nagamalai Vasimalai, Vânia Vilas-Boas, Juan Gallo, María de Fátima Cerqueira, Mario Menéndez-Miranda, José Manuel Costa-Fernández, Lorena Diéguez, Begoña Espiña and María Teresa Fernández-Argüelles
Beilstein J. Nanotechnol. 2018, 9, 530–544. https://doi.org/10.3762/bjnano.9.51

How to Cite

Vasimalai, N.; Vilas-Boas, V.; Gallo, J.; Cerqueira, M. d. F.; Menéndez-Miranda, M.; Costa-Fernández, J. M.; Diéguez, L.; Espiña, B.; Fernández-Argüelles, M. T. Beilstein J. Nanotechnol. 2018, 9, 530–544. doi:10.3762/bjnano.9.51

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 934.2 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Al-Otaify, A. Sub-hour pulsed laser ablation synthesis of dual-emissive carbon nanoparticles from lemon leaves. Applied Physics A 2025, 131. doi:10.1007/s00339-025-08992-z
  • Dahiya, B.; Narwal, S.; Singh, A.; Sura, A.; Singh, A.; Sehrawat, V.; Nain, S. Carbon-Based Nanocomposites for Ecological Surveillance. Lecture Notes in Nanoscale Science and Technology; Springer Nature Switzerland, 2025; pp 275–293. doi:10.1007/978-3-031-96895-2_13
  • Lyu, J. S.; Park, K. W.; Han, J. Unveiling the utilization of biowaste-derived carbon nanodots as texture modifiers in extrusion-cooked soy-protein-based high-moisture meat analogs. Food Hydrocolloids 2025, 172, 111977. doi:10.1016/j.foodhyd.2025.111977
  • Kakkar, S.; Jha, R. K.; Hattila, D.; Singh, A. K.; Shukla, P. K.; Yadav, S. P. S.; Meena, A. S. Plant-Derived Natural Product-Based Nanoformulations for Healthcare Application. Nanotheranostics 2025, 9, 262–279. doi:10.7150/ntno.113606
  • Vilas-Boas, V.; Arnesdotter, E.; Carvalho, F.; Alfaro-Moreno, E. Methodological Considerations for Setting Up Human-Relevant In Vitro Nanotoxicology Experiments—A Practical Guide. Nanosafety; Springer Nature Switzerland, 2025; pp 27–53. doi:10.1007/978-3-031-93871-9_2
  • Romero, M. P.; Lagos, K. J.; Cuadrado, C. F.; Garzón-Romero, C. C.; Salazar, M. A.; Solorzano, G.; Gardener, J. A.; González, M. A.; Rivera, M. Antibacterial and Antitumor Application of Carbon Dots Based on Natural Products for Photodynamic/Photothermal Effects. International journal of nanomedicine 2025, 20, 7893–7914. doi:10.2147/ijn.s507574
  • Alqahtani, A. M.; Alharbi, H.; Alqarni, S. A.; Ashour, G. R. S.; Ageeli, A. A.; Almutairi, H. H.; Alomari, K. B.; El-Metwaly, N. M. Biopolymers Blend for Microwave-Synthesized Carbon Dots and Iodine Entrapping for Potential Biomedical Bandages. Fibers and Polymers 2025, 26, 3317–3334. doi:10.1007/s12221-025-01028-6
  • Warjurkar, K.; Patyal, R.; Sharma, V. Multifunctional Tradescantia pallida Derived Copper-Nitrogen Codoped Green Carbon Dots as Nanozyme, Dual Sensor, and Fluorescent Ink for Anticounterfeiting and Smart Textiles. ACS applied bio materials 2025, 8, 4779–4790. doi:10.1021/acsabm.5c00150
  • Zhang, G.; Chen, B.; Wang, T.; Ning, W.; Du, B.; Lv, J.; Guo, J.; Yang, C.; Li, J.; Liu, S.; Chen, Z.; Li, S.; Yang, C. Nitrogen-doped carbon dots enhanced pollutant degradation and bioelectricity generation in bioelectrochemical systems. Journal of Environmental Chemical Engineering 2025, 13, 115451. doi:10.1016/j.jece.2025.115451
  • Kudelkina, V. V.; Musaeva, D. U.; Syu, A. V.; Kopylov, A. N.; Kosyreva, A. M.; Alekseeva, A. I.; Makarova, O. V.; Timoshenko, V. Y. The Effect of Poloxamer Coating on the Toxicity of Carbon Dots in Glioblastoma and Embryonic Kidney Models In Vitro. Bulletin of experimental biology and medicine 2025, 178, 491–495. doi:10.1007/s10517-025-06362-6
  • Araújo-Silva, H.; Martins, B.; Cerqueira, F.; Gonçalves, H.; Machado, R.; Gomes, A. C.; Lúcio, M. Novel nanographene oxide conjugates as stimuli-responsive theranostic tool for cancer. Materials Today Chemistry 2025, 44, 102552. doi:10.1016/j.mtchem.2025.102552
  • Zheng, J.-Q.; Yan, M.; Jiang, H.-J.; Yin, T.-P. Carbon dots derived from corn silk and their antimicrobial properties. Food & Medicine Homology 2025. doi:10.26599/fmh.2026.9420094
  • Mohammad Nejad Khiavi, N.; Sowti Khiabani, M.; Rezaei Mokarram, R.; Hamishekar, H.; Samadi Kafil, H. Green synthesis of carbon quantum dots (CQDs) from butternut squash (Cucurbita moschata) peel waste: characterization, antibacterial and antioxidant activity. Biomass Conversion and Biorefinery 2025, 15, 18133–18144. doi:10.1007/s13399-025-06505-9
  • Tripti; Singh, P.; Rani, S.; Singh, S.; Kumar, L.; Gupta, V.; Kumar, S.; Kumar, P. Investigation of Magnetism and Photocatalytic Activity Using Biomass‐Derived Carbon Dots. ChemistrySelect 2025, 10. doi:10.1002/slct.202402585
  • Inoue, K.; Suzuki, R.; Kaneda, Y.; Tanimura, M.; Shinozaki, K.; Tachibana, M. Effects of pyrolysis temperature on plant-seed-derived carbon dots. Journal of Materials Chemistry C 2025. doi:10.1039/d5tc03150h
  • Mathew, J.; Mathew, B. Green synthesized fluorescent carbon nanoparticles and their applications. Fluorescent Carbon Nanoparticles; Elsevier, 2025; pp 129–183. doi:10.1016/b978-0-443-13591-0.00007-3
  • Kidangayil Sali, A.; Thomas, S. Synthesis of carbon nanomaterials from vegetables. Nanostructured Carbon Materials from Plant Extracts; Elsevier, 2025; pp 77–100. doi:10.1016/b978-0-323-95126-5.00025-1
  • Ahmed, H. B.; Emam, H. E.; Shaheen, T. I. Fluorescent antimicrobial hydrogel based on fluorophore N-doped carbon dots originated from cellulose nanocrystals. Scientific reports 2024, 14, 29226. doi:10.1038/s41598-024-80222-7
  • Dhumal, P.; Chakraborty, S.; Ibrahim, B.; Kaur, M.; Valsami-Jones, E. Green-synthesised carbon nanodots: A SWOT analysis for their safe and sustainable innovation. Journal of Cleaner Production 2024, 480, 144115. doi:10.1016/j.jclepro.2024.144115
  • Docrat, T. F.; Eltahir, A. O. E.; Hussein, A. A.; Marnewick, J. L. Green synthesis of metal nanocarriers: A perspective for targeting glioblastoma. Drug discovery today 2024, 29, 104219. doi:10.1016/j.drudis.2024.104219

Patents

  • ZHOU NINGLIN; SONG QIUXIAN; SHEN JIAN; ZHANG QICHENG; SUN BAOHONG; SHI SHAOZE; XU WANG; LU TINGYU. Carbon quantum dot with Pericarpium Zanthoxyli as carbon source as well as preparation method and application of carbon quantum dot. CN 113025318 A, June 25, 2021.
Other Beilstein-Institut Open Science Activities