Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene

Maryam Barzegar, Masoud Berahman and Azam Iraji zad
Beilstein J. Nanotechnol. 2018, 9, 608–615. https://doi.org/10.3762/bjnano.9.57

Cite the Following Article

Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene
Maryam Barzegar, Masoud Berahman and Azam Iraji zad
Beilstein J. Nanotechnol. 2018, 9, 608–615. https://doi.org/10.3762/bjnano.9.57

How to Cite

Barzegar, M.; Berahman, M.; Iraji zad, A. Beilstein J. Nanotechnol. 2018, 9, 608–615. doi:10.3762/bjnano.9.57

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 2.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Maiti, P.; Das, S.; Panda, J.; Karmakar, D.; Pal, A.; Guha, S.; Sengupta, A.; Paul, S.; Paul, P. K. Spectrofluorometric detection of mercury ions in aqueous medium and cellular milieu using MoS2 nanoflakes. Journal of Physics and Chemistry of Solids 2024, 184, 111680. doi:10.1016/j.jpcs.2023.111680
  • Hosseinnezhad, M.; Ghahari, M.; Mobarhan, G.; Fathi, M.; Palevicius, A.; Nutalapati, V.; Janusas, G.; Nasiri, S. New Insights into Improving the Photovoltaic Performance of Dye-Sensitized Solar Cells by Removing Platinum from the Counter Electrode Using a Graphene-MoS2 Composite or Hybrid. Micromachines 2023, 14, 2161. doi:10.3390/mi14122161
  • Jayachandran, M. J.; Kala C, P.; Thiruvadigal D, J. PH3 gas adsorption on S and Mo vacancy MoS2 monolayer: a first principle study. Journal of Nanoparticle Research 2023, 25. doi:10.1007/s11051-023-05855-7
  • Ohayon–Lavi, A.; John, S.; Lavi, A.; Leibovitch, Y.; Vradman, L.; Ruse, E.; Regev, O. Solubility of MoS2 and Graphite in Molten Salt: Flowers, Faceted Crystals, or Exfoliation?. Small Structures 2023, 4. doi:10.1002/sstr.202300197
  • Saseendran, S. B.; Ashok, A.; Jayaraj, M. K.; Reshmi, R.; Asha, A. S. Single step growth of vertical MoS2 thin films by chemical vapor deposition for hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics 2023, 34. doi:10.1007/s10854-023-10677-3
  • Devi, A.; Kumar, A.; Contreras, P.; Singh, A.; Ahluwalia, P. Optical properties of triangular nanoflakes of CrmSen. Materials Today: Proceedings 2023. doi:10.1016/j.matpr.2022.12.259
  • Chakraborty, B.; Akhtar, M.; Bhattacharyya, P. Interpreting Sensing Behavior of MoS<sub>2</sub> Nanoflower Based Liquid Phase BTX Sensor Employing DFT Study. In 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON), IEEE, 2022. doi:10.1109/edkcon56221.2022.10032830
  • Munusami, V.; Arutselvan, K.; Vadivel, S.; Govindasamy, S. High sensitivity LPG and H2 gas sensing behavior of MoS2/graphene hybrid sensors prepared by facile hydrothermal method. Ceramics International 2022, 48, 29322–29331. doi:10.1016/j.ceramint.2022.05.334
  • Mokoloko, L. L.; Matsoso, J. B.; Antonatos, N.; Mazánek, V.; Moreno, B. D.; Forbes, R. P.; Barrett, D. H.; Sofer, Z.; Coville, N. J. From 0D to 2D: N-doped carbon nanosheets for detection of alcohol-based chemical vapours. RSC advances 2022, 12, 21440–21451. doi:10.1039/d2ra03931a
  • Rigi Jangjoo, M.; Berahman, M. Room-temperature nitrogen dioxide gas sensor based on graphene oxide nanoribbons decorated with MoS2 nanospheres. Applied Physics A 2022, 128. doi:10.1007/s00339-022-05605-x
  • Matsoso, J. B.; Antonatos, N.; Kumar, P. R.; Jellett, C.; Mazánek, V.; Journet, C.; Sofer, Z. Simultaneous microwave-assisted reduction and B/N co-doping of graphene oxide for selective recognition of VOCs. Journal of Materials Chemistry C 2022, 10, 3307–3317. doi:10.1039/d1tc05453h
  • Xing, Y.; Zhang, L.-X.; Li, C.-T.; Yin, Y.-Y.; Bie, L.-J. Pt decoration and oxygen defects synergistically boosted xylene sensing performance of polycrystalline SnO2 nanosheet assembled microflowers. Sensors and Actuators B: Chemical 2022, 354, 131220. doi:10.1016/j.snb.2021.131220
  • Lin, R.-S.; Kim, T.; Wang, X.-Y.; Du, W. Potential application of MoS2 nanoflowers as photocatalysts in cement: Strength, hydration, and dye degradation properties. Journal of Cleaner Production 2022, 330, 129947. doi:10.1016/j.jclepro.2021.129947
  • Devi, A.; Kumar, A.; Kumar, T.; Bharti; Adhikari, R.; Ahluwalia, P. K.; Singh, A. Structural, electronic and magnetic properties of CrmSn and CrmSen nanoflakes: An ab initio investigation. Physica E: Low-dimensional Systems and Nanostructures 2021, 134, 114825. doi:10.1016/j.physe.2021.114825
  • J, M. J.; C, P. k.; D, J. T. First Principle Study of Mo and S Vacancy Effect in Armchair and Zigzag MoS2 2D Material For Gas Sensing Application. ECS Journal of Solid State Science and Technology 2021, 10, 101009. doi:10.1149/2162-8777/ac2d05
  • Abareshi, A.; Samadi, N.; Houshiar, M.; Nafisi, S.; Maibach, H. I. Erythromycin dermal delivery by MoS2 nanoflakes. Journal of Pharmaceutical Investigation 2021, 51, 691–700. doi:10.1007/s40005-021-00539-7
  • Abareshi, A.; Samadi, N.; Houshiar, M.; Nafisi, S.; Maibach, H. I. Erythromycin dermal delivery by MoS2 nanoflakes. Journal of Pharmaceutical Investigation 2021, 51, 1–10.
  • Chakraborty, B.; Maity, I.; Chung, P.-F.; Ho, M.-S.; Bhattacharyya, P. Understanding the Highly Selective Methanol Sensing Mechanism of Electrodeposited Pristine MoS 2 Using First Principle Analysis. IEEE Sensors Journal 2021, 21, 16484–16491. doi:10.1109/jsen.2021.3077124
  • Dastjerdi, R.; Hashemikia, S. Mechanisms and guidelines on the sustainable engineering of self-assembling; nanostars and nanoflowers. Journal of Cleaner Production 2021, 312, 127570. doi:10.1016/j.jclepro.2021.127570
  • Cao, J.; Chen, Q.; Wang, X.; Zhang, Q.; Yu, H.-D.; Xiao, H.; Huang, W. Recent Development of Gas Sensing Platforms Based on 2D Atomic Crystals. Research (Washington, D.C.) 2021, 2021, 9863038. doi:10.34133/2021/9863038
Other Beilstein-Institut Open Science Activities