Cite the Following Article
Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene
Maryam Barzegar, Masoud Berahman and Azam Iraji zad
Beilstein J. Nanotechnol. 2018, 9, 608–615.
https://doi.org/10.3762/bjnano.9.57
How to Cite
Barzegar, M.; Berahman, M.; Iraji zad, A. Beilstein J. Nanotechnol. 2018, 9, 608–615. doi:10.3762/bjnano.9.57
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 2.1 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Zhao, Q.; Yang, S.; Liu, Z.; You, Y.; Wang, D. Fe-doped NiO nanostructure-based gas sensor for selective detection of triethylamine and xylene. New Journal of Chemistry 2025, 49, 825–832. doi:10.1039/d4nj04799k
- Bhardwaj, R.; Hazra, A. A MoS2 quantum dot functionalized TiO2 nanotube array for selective detection of xylene at low temperature. Materials Advances 2024, 5, 9383–9390. doi:10.1039/d4ma00783b
- Maiti, P.; Das, S.; Panda, J.; Karmakar, D.; Pal, A.; Guha, S.; Sengupta, A.; Paul, S.; Paul, P. K. Spectrofluorometric detection of mercury ions in aqueous medium and cellular milieu using MoS2 nanoflakes. Journal of Physics and Chemistry of Solids 2024, 184, 111680. doi:10.1016/j.jpcs.2023.111680
- Hosseinnezhad, M.; Ghahari, M.; Mobarhan, G.; Fathi, M.; Palevicius, A.; Nutalapati, V.; Janusas, G.; Nasiri, S. New Insights into Improving the Photovoltaic Performance of Dye-Sensitized Solar Cells by Removing Platinum from the Counter Electrode Using a Graphene-MoS2 Composite or Hybrid. Micromachines 2023, 14, 2161. doi:10.3390/mi14122161
- Jayachandran, M. J.; Kala C, P.; Thiruvadigal D, J. PH3 gas adsorption on S and Mo vacancy MoS2 monolayer: a first principle study. Journal of Nanoparticle Research 2023, 25. doi:10.1007/s11051-023-05855-7
- Ohayon–Lavi, A.; John, S.; Lavi, A.; Leibovitch, Y.; Vradman, L.; Ruse, E.; Regev, O. Solubility of MoS2 and Graphite in Molten Salt: Flowers, Faceted Crystals, or Exfoliation?. Small Structures 2023, 4. doi:10.1002/sstr.202300197
- Saseendran, S. B.; Ashok, A.; Jayaraj, M. K.; Reshmi, R.; Asha, A. S. Single step growth of vertical MoS2 thin films by chemical vapor deposition for hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics 2023, 34. doi:10.1007/s10854-023-10677-3
- Devi, A.; Kumar, A.; Contreras, P.; Singh, A.; Ahluwalia, P. Optical properties of triangular nanoflakes of CrmSen. Materials Today: Proceedings 2023. doi:10.1016/j.matpr.2022.12.259
- Chakraborty, B.; Akhtar, M.; Bhattacharyya, P. Interpreting Sensing Behavior of MoS<sub>2</sub> Nanoflower Based Liquid Phase BTX Sensor Employing DFT Study. In 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON), IEEE, 2022; pp 169–172. doi:10.1109/edkcon56221.2022.10032830
- Munusami, V.; Arutselvan, K.; Vadivel, S.; Govindasamy, S. High sensitivity LPG and H2 gas sensing behavior of MoS2/graphene hybrid sensors prepared by facile hydrothermal method. Ceramics International 2022, 48, 29322–29331. doi:10.1016/j.ceramint.2022.05.334
- Mokoloko, L. L.; Matsoso, J. B.; Antonatos, N.; Mazánek, V.; Moreno, B. D.; Forbes, R. P.; Barrett, D. H.; Sofer, Z.; Coville, N. J. From 0D to 2D: N-doped carbon nanosheets for detection of alcohol-based chemical vapours. RSC advances 2022, 12, 21440–21451. doi:10.1039/d2ra03931a
- Rigi Jangjoo, M.; Berahman, M. Room-temperature nitrogen dioxide gas sensor based on graphene oxide nanoribbons decorated with MoS2 nanospheres. Applied Physics A 2022, 128. doi:10.1007/s00339-022-05605-x
- Matsoso, J. B.; Antonatos, N.; Kumar, P. R.; Jellett, C.; Mazánek, V.; Journet, C.; Sofer, Z. Simultaneous microwave-assisted reduction and B/N co-doping of graphene oxide for selective recognition of VOCs. Journal of Materials Chemistry C 2022, 10, 3307–3317. doi:10.1039/d1tc05453h
- Xing, Y.; Zhang, L.-X.; Li, C.-T.; Yin, Y.-Y.; Bie, L.-J. Pt decoration and oxygen defects synergistically boosted xylene sensing performance of polycrystalline SnO2 nanosheet assembled microflowers. Sensors and Actuators B: Chemical 2022, 354, 131220. doi:10.1016/j.snb.2021.131220
- Lin, R.-S.; Kim, T.; Wang, X.-Y.; Du, W. Potential application of MoS2 nanoflowers as photocatalysts in cement: Strength, hydration, and dye degradation properties. Journal of Cleaner Production 2022, 330, 129947. doi:10.1016/j.jclepro.2021.129947
- J, M. J.; C, P. k.; D, J. T. First Principle Study of Mo and S Vacancy Effect in Armchair and Zigzag MoS2 2D Material For Gas Sensing Application. ECS Journal of Solid State Science and Technology 2021, 10, 101009. doi:10.1149/2162-8777/ac2d05
- Devi, A.; Kumar, A.; Kumar, T.; Bharti; Adhikari, R.; Ahluwalia, P. K.; Singh, A. Structural, electronic and magnetic properties of CrmSn and CrmSen nanoflakes: An ab initio investigation. Physica E: Low-dimensional Systems and Nanostructures 2021, 134, 114825. doi:10.1016/j.physe.2021.114825
- Abareshi, A.; Samadi, N.; Houshiar, M.; Nafisi, S.; Maibach, H. I. Erythromycin dermal delivery by MoS2 nanoflakes. Journal of Pharmaceutical Investigation 2021, 51, 691–700. doi:10.1007/s40005-021-00539-7
- Abareshi, A.; Samadi, N.; Houshiar, M.; Nafisi, S.; Maibach, H. I. Erythromycin dermal delivery by MoS2 nanoflakes. Journal of Pharmaceutical Investigation 2021, 51, 1–10.
- Dastjerdi, R.; Hashemikia, S. Mechanisms and guidelines on the sustainable engineering of self-assembling; nanostars and nanoflowers. Journal of Cleaner Production 2021, 312, 127570. doi:10.1016/j.jclepro.2021.127570