This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74
Figure 1: Pathway for preparing M-100Fe@Fe2O3 samples.
Figure 2: PXRD patterns of Fe2O3, MIL-100(Fe), and M-100Fe@Fe2O3 samples.
Figure 3: SEM images of Fe2O3, MIL-100(Fe), and M-100Fe@Fe2O3 samples.
Figure 4: FTIR spectra of Fe2O3, MIL-100(Fe), and M-100Fe@Fe2O3 samples.
Figure 5: (a) N2 adsorption and desorption isotherms over Fe2O3, MIL-100(Fe), and M-100Fe@Fe2O3 samples obtai...
Figure 6: TGA curves of Fe2O3, MIL-100(Fe), and M-100Fe@Fe2O3 samples.
Figure 7: XPS spectra of Fe2O3 and M-100Fe@Fe2O3#1.80 samples: (a) Fe 2p region and (b) O 1 s region.
Figure 8: Adsorption isotherms of M-100Fe@Fe2O3 and reference MIL-100(Fe) samples at 298 K: (a) CO2 adsorptio...
Figure 9: IAST-derived CO2/N2 selectivities over M-100Fe@Fe2O3 samples for a mixture with 10% N2 and 90% CO2 ...
Figure 10: Enthalpy of CO2 adsorption over M-100Fe@Fe2O3#1.80 sample.
Figure 11: CO2 adsorption/desorption isotherms over M-100Fe@Fe2O3#1.80 sample for five cycles at 298 K.