Search results

Search for "electron beam" in Full Text gives 379 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Evaluating metal-organic precursors for focused ion beam-induced deposition through solid-layer decomposition analysis

  • Benedykt R. Jany,
  • Katarzyna Madajska,
  • Aleksandra Butrymowicz-Kubiak,
  • Franciszek Krok and
  • Iwona B. Szymańska

Beilstein J. Nanotechnol. 2025, 16, 1942–1951, doi:10.3762/bjnano.16.135

Graphical Abstract
  • Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland 10.3762/bjnano.16.135 Abstract The development of modern metal deposition techniques like focused ion/electron beam-induced deposition (FIBID/FEBID) relies heavily on the availability of metal-organic precursors of particular properties. To
  • -dispersive X-ray spectroscopy (EDX); focused ion beam (FIB); focused ion beam-induced deposition (FIBID); machine learning; scanning electron microscopy (SEM); Introduction A variety of nanomanufacturing techniques, such as optical and electron-beam lithography, nanoimprint lithography, atomic layer
  • % [5][15][22][23][24][25][26]. This shows that the electron beam-induced decomposition is influenced by the ligand and also by the coordination center. Due to the key role played by secondary electrons in the decomposition of FIBID precursors, FIBID precursor compounds are limited to those used and
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2025

Low-temperature AFM with a microwave cavity optomechanical transducer

  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • August K. Roos,
  • Erik Holmgren,
  • Riccardo Borgani,
  • Mats O. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2025, 16, 1873–1882, doi:10.3762/bjnano.16.130

Graphical Abstract
  • edge of the plate, giving rise to a modulation of its kinetic inductance due to surface strain generated by cantilever bending. A Pt–C tip with curvature radius below 10 nm at its apex is formed at the free end of the cantilever through a series of electron-beam-assisted depositions. Figure 1d shows a
PDF
Album
Full Research Paper
Published 24 Oct 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
PDF
Album
Review
Published 27 Aug 2025

Influence of ion beam current on the structural, optical, and mechanical properties of TiO2 coatings: ion beam-assisted vs conventional electron beam evaporation

  • Agata Obstarczyk and
  • Urszula Wawrzaszek

Beilstein J. Nanotechnol. 2025, 16, 1097–1112, doi:10.3762/bjnano.16.81

Graphical Abstract
  • ) coatings deposited using electron beam evaporation (EBE) and ion beam-assisted deposition (IBAD) are presented. Post-process annealing at 800 °C was also conducted to examine its impact on the properties of the prepared coatings. After annealing at 800 °C, a transition from amorphous to the anatase phase
  • , adhesive, and durable TiO2 coatings with improved optical and mechanical properties, suitable for applications requiring enhanced wear resistance. Keywords: electron beam evaporation; ion beam-assisted deposition; mechanical properties; nanocrystalline anatase; optical properties; TiO2 coatings
  • ; Introduction One of the commonly used methods for the deposition of various materials for thin film optical coatings, is electron beam evaporation (EBE) [1][2][3][4][5]. Today, in many applications, including medicine, telecommunications, optoelectronics, photovoltaics, the requirements for optical coatings
PDF
Album
Full Research Paper
Published 14 Jul 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
  • MeV-UED facility of SLAC National Accelerator Laboratory. This setup features a high brightness, femtosecond electron beam operating at 3–4 MeV energies, coupled with a rapid-flow liquid sheet jet system, which ensures that the sample is refreshed before each pump–probe shot sequence. The scattering
PDF
Album
Review
Published 02 Jul 2025

Focused ion beam-induced platinum deposition with a low-temperature cesium ion source

  • Thomas Henning Loeber,
  • Bert Laegel,
  • Meltem Sezen,
  • Feray Bakan Misirlioglu,
  • Edgar J. D. Vredenbregt and
  • Yang Li

Beilstein J. Nanotechnol. 2025, 16, 910–920, doi:10.3762/bjnano.16.69

Graphical Abstract
  • of the Cs+ FIBID-Pt deposits using focused electron beam-induced deposition (FEBID). Therefore, a C-rich region exists in the lower-left corner of the C map. EDS spectra were taken at five points within the bulk deposit and then averaged to determine the chemical composition. Figure 6 displays these
PDF
Album
Full Research Paper
Published 16 Jun 2025

Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline

  • Sabina Lewińska,
  • Pavlo Aleshkevych,
  • Roman Minikayev,
  • Anna Bajorek,
  • Mateusz Dulski,
  • Krystian Prusik,
  • Tomasz Wojciechowski and
  • Anna Ślawska-Waniewska

Beilstein J. Nanotechnol. 2025, 16, 762–784, doi:10.3762/bjnano.16.59

Graphical Abstract
  • various shapes and dimensions of several dozens of micrometers. The surfaces of the grains are notably rough and torn, and during the measurement displayed high susceptibility to electron beam charging, which is a characteristic of organic compounds. Consequently, these grains were recognized as
PDF
Album
Full Research Paper
Published 02 Jun 2025

Synthesis of a multicomponent cellulose-based adsorbent for tetracycline removal from aquaculture water

  • Uyen Bao Tran,
  • Ngoc Thanh Vo-Tran,
  • Khai The Truong,
  • Dat Anh Nguyen,
  • Quang Nhat Tran,
  • Huu-Quang Nguyen,
  • Jaebeom Lee and
  • Hai Son Truong-Lam

Beilstein J. Nanotechnol. 2025, 16, 728–739, doi:10.3762/bjnano.16.56

Graphical Abstract
  • the lateral bonding effect of GA and PVA, as well as the dissolution of cellulose by Zn2+. The rough, wrinkled surface and cracks are likely due to the focused high-energy electron beam during the FE-SEM imaging process [22]. Larger agglomerates, possibly ZnSO4 residues, are also apparent, which
PDF
Album
Full Research Paper
Published 27 May 2025

Focused ion and electron beams for synthesis and characterization of nanomaterials

  • Aleksandra Szkudlarek

Beilstein J. Nanotechnol. 2025, 16, 613–616, doi:10.3762/bjnano.16.47

Graphical Abstract
  • the best of times, it was the worst of times" [2] – onto a 200 × 200 micron square of plastic using an electron beam. This achievement prompts a reflection: is nowadays the best or the worst of times for the development of electron and ion beam technologies? With the hope to contribute addressing this
  • question, the co-guest editors Dr. Ivo Utke, Dr. Katja Höflich, Dr. Gregor Hlawacek, Dr. Nico Klingner, and myself organized a thematic issue in connection with the work presented at the joint meeting of the FIT4NANO (fit4nano – Focused Ion Technology for Nanomaterials) and FEBIP (Focused Electron Beam
  • by Oddur Ingólfsson’s group [6], supported by quantum chemical calculations, revealed that chlorine removal during focused electron beam induced deposition (FEBID) was nearly complete, in contrast to the limited chlorine loss observed in gas-phase experiments. Previous studies have shown that gas
PDF
Album
Editorial
Published 02 May 2025

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • spectrometer (Bruker), equipped with an Ar ion laser (532 nm) with 0.2 mW laser operating power. Scanning electron microscopy (SEM) analysis was carried out with a HITACHI SU8020 model, using an electron beam energy of 3.0 keV. X-ray photoelectron spectroscopy (XPS) was performed using an ESCA-5000 Versa Probe
PDF
Album
Full Research Paper
Published 17 Apr 2025

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, Rennes, France Faculty of Chemistry, Nicolaus Copernicus University in Toruń (NCU), Toruń, Poland 10.3762/bjnano.16.41 Abstract Gas-assisted focused electron beam-induced deposition (FEBID) as a direct, minimally invasive 3D nanopatterning
  • promising precursor for nanoprinting 3D structures with finely focused electron beams. Keywords: 3D nanoprinting; electron-induced molecule dissociation; focused electron beam-induced deposition; metal nanostructures; metalorganic complexes; Introduction Direct fabrication of nanostructures without the
  • ][11][12] properties at the nanometer scale. One method that is capable of creating such nanostructures is focused electron beam-induced deposition (FEBID) [13][14][15][16][17][18][19][20][21][22][23]. In this technique, a focused electron beam decomposes adsorbed molecules on a substrate in vacuum
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • electron beam evaporation [10] have been reported in the literature. RF sputtering is the predominant technique for thin film deposition because of its benefits regarding layer adhesion, uniformity, composition, and deposition rate compared to other methods [11]. In the deposition of molybdenum films, RF
PDF
Album
Full Research Paper
Published 01 Apr 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • physical and chemical methods such as molecular beam epitaxy [8], electron-beam evaporation [9], thermal evaporation [10], pulsed laser deposition (PLD) [11], and RF sputtering [12]. RF sputtering is a versatile technique because various process parameters such as RF power, deposition time, substrate
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • Alexander Kuprava Michael Huth Physics Institute, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany 10.3762/bjnano.16.4 Abstract A fast simulation approach for focused electron beam induced deposition (FEBID) numerically solves the diffusion–reaction equation
  • the center region of an intentionally defocused electron beam. We employ the method to determine the precursor sticking coefficient for bis(benzene)chromium, Cr(C6H6)2, and trimethyl(methylcyclopentadienyl)platinum(IV), Me3CpPtMe, and find a value of about 10−2 for both precursors, which is
  • density, τ is the average precursor residence time, σ is the energy-averaged dissociation cross section, and D is the surface diffusion coefficient. This rate equation makes up the balance between all processes that contribute to replenishment and depletion of precursor molecules. The electron beam is
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • mbar) using an electron beam melting furnace having a beam power of 60 kW (ELIT 60) at an accelerating voltage of 24 kV in a water-cooled crucible with feeding mechanism and an extraction system [32]. All operations were conducted at the Centre for Materials for Electronics Technology (CMET), Hyderabad
PDF
Album
Full Research Paper
Published 18 Dec 2024

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • Focused ion beam-induced deposition (FIBID) and focused electron beam-induced deposition (FEBID) are vacuum-based, charged-particle bottom-up nanofabrication techniques that directly fabricate metal containing nanostructures as a consequence of the reactions between ions or electrons and organometallic
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Out-of-plane polarization induces a picosecond photoresponse in rhombohedral stacked bilayer WSe2

  • Guixian Liu,
  • Yufan Wang,
  • Zhoujuan Xu,
  • Zhouxiaosong Zeng,
  • Lanyu Huang,
  • Cuihuan Ge and
  • Xiao Wang

Beilstein J. Nanotechnol. 2024, 15, 1362–1368, doi:10.3762/bjnano.15.109

Graphical Abstract
  • monolayers of WSe2 were aligned at a 0° angle to form the 3R phase. The graphene/3R WSe2/graphene heterojunctions were aligned and assembled onto a SiO2/Si substrate by the all-dry transfer method. Au/Cr (50/10 nm) electrodes were patterned using standard electron-beam lithography (EBL, Raith 150 Two) and
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2024

Investigation of Hf/Ti bilayers for the development of transition-edge sensor microcalorimeters

  • Victoria Y. Safonova,
  • Anna V. Gordeeva,
  • Anton V. Blagodatkin,
  • Dmitry A. Pimanov,
  • Anton A. Yablokov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2024, 15, 1353–1361, doi:10.3762/bjnano.15.108

Graphical Abstract
  • samples with bridges of different shapes and lengths were fabricated simultaneously in an electron beam evaporator at a vacuum of 5 × 10−8 Torr. The sample with the film was made separately but with the same parameters, including the thickness and evaporation rates. On the bridged samples
  • , photolithography was performed on a Karl Suss MJB3 lithography aligner before deposition. We used AZ5214E photoresist, which was subsequently developed with MIF726. We then deposited 85 nm of hafnium and 5 nm of titanium onto the substrates through developed areas in the resist, using an electron beam evaporator
PDF
Album
Full Research Paper
Published 06 Nov 2024

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • Photonics, Łukasiewicz Research Network, Lotników 32/46, 02-668, Warsaw, Poland 10.3762/bjnano.15.103 Abstract Focused electron beam-induced deposition (FEBID) is a novel technique for the development of multimaterial nanostructures. More importantly, it is applicable to the fabrication of free-standing
  • emission occur [3][4][5]. There are only a few processes with resolution and repeatability suitable for creating nanostructures, and even fewer are available for self-standing nanostructures. That includes epitaxial techniques as well as focused electron beam-induced deposition (FEBID) [6][7]. Integration
  • effect using operational microelectromechanical systems” (Grant No. 2020/37/B/ST7/03792) and PRELUDIUM-21 grant “Nanometrology of field emission phenomena from electron beam deposited nanowires operating as nano- and picodeflection sensors – FEmet” (Grant No. 2022/45/N/ST7/03049) with help from the
PDF
Album
Full Research Paper
Published 23 Oct 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • light interactions with biological tissue [18] as well as focused electron beam-induced deposition (FEBID) [19]. The general approach to assess the beam-induced heat damage and undesired artifacts, regardless if working with ions [17], photons [18], or electrons [19], compares experiments to models
  • based on heat transfer and to Monte Carlo or finite element simulations [17][18][19]. Open source programs that assess heat deposition and diffusion are readily available to assess damage in light–tissue interactions [18]. For electron beams, multidimensional models predicting electron beam-induced
PDF
Album
Full Research Paper
Published 27 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • , Feuerwerkerstrasse 39, CH 3602 Thun, Switzerland 10.3762/bjnano.15.90 Abstract Direct electron beam writing is a powerful tool for fabricating complex nanostructures in a single step. The electron beam locally cleaves the molecules of an adsorbed gaseous precursor to form a deposit, similar to 3D printing but
  • without the need for a resist or development step. Here, we employ for the first time a silver β-diketonate precursor for focused electron beam-induced deposition (FEBID). The used compound (hfac)AgPMe3 operates at an evaporation temperature of 70–80 °C and is compatible with commercially available gas
  • injection systems used in any standard scanning electron microscope. Growth of smooth 3D geometries could be demonstrated for tightly focused electron beams, albeit with low silver content in the deposit volume. The electron beam-induced deposition proved sensitive to the irradiation conditions, leading to
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • which the deposition occurs. During electron beam evaporation, an electron beam is used to vaporize the target material, while during sputtering, a high-energy ion beam is used to bombard the target. In both cases, atoms are ejected from the target and subsequently condense onto the substrate. The
PDF
Album
Review
Published 16 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • -care diagnostic systems. This device was realized using a top-to-down approach with an anisotropic and cost-effective self-stop etching method [85][86]. A novel CMOS anisotropic technique was implemented for the etching process, combining classical optical and electron beam lithography with anisotropic
PDF
Album
Review
Published 06 Aug 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • microscope using commercially available components and chemicals, which paves the way for a broader application of direct etching-assisted FEBID to obtain pure metallic structures. Keywords: FEBID; gold; nanofabrication; platinum; purification; Introduction Focused electron beam-induced deposition (FEBID
  • focused electron beam. As a result, a solid deposit is formed, and organic and inorganic volatile fragments are removed by the vacuum pumps of the chamber. In the case of an organometallic precursor gas, in an ideal scenario, only metal is deposited, and all fragments arising from organic and inorganic
  • , during electron beam exposure, successful purification of the deposited material occurs only if the deposited metal is inherently resistant to oxidation, such as Au, Pt, and Ru [34]. In the case of iron [35], the removal of carbon is accompanied by a large incorporation of oxygen in the deposit
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

Synthesis of silver–palladium Janus nanoparticles using co-sputtering of independent sources: experimental and theorical study

  • Maria J. Martínez-Carreón,
  • Francisco Solís-Pomar,
  • Abel Fundora,
  • Claudio D. Gutiérrez-Lazos,
  • Sergio Mejía-Rosales,
  • Hector N. Fernández-Escamilla,
  • Jonathan Guerrero-Sánchez,
  • Manuel F. Meléndrez and
  • Eduardo Pérez-Tijerina

Beilstein J. Nanotechnol. 2024, 15, 808–816, doi:10.3762/bjnano.15.67

Graphical Abstract
  • -defined regions in the TEM micrographs. In STEM, the main differences in intensity are expected to occur when two elements with notably different atomic numbers interact with the electron beam; in this case, the two elements involved have very similar atomic numbers (46 for Pd and 47 for Ag); thus the
PDF
Album
Full Research Paper
Published 04 Jul 2024
Other Beilstein-Institut Open Science Activities