Search results

Search for "micelles" in Full Text gives 111 result(s) in Beilstein Journal of Nanotechnology.

Exploring the potential of polymers: advancements in oral nanocarrier technology

  • Rousilândia de Araujo Silva,
  • Igor Eduardo Silva Arruda,
  • Luise Lopes Chaves,
  • Mônica Felts de La Roca Soares and
  • Jose Lamartine Soares Sobrinho

Beilstein J. Nanotechnol. 2025, 16, 1751–1793, doi:10.3762/bjnano.16.122

Graphical Abstract
  • copolymers and polyethylene glycol, as these materials tend to self-assemble into micelles or stable nanostructures when exposed to concentration gradients in aqueous solutions. Preformed polymer-based methods stand out for their simplicity, reproducibility, and regulatory compliance, reinforcing their
  • , forming polymeric complexes. Consequently, the incorporation of genetic material can occur via encapsulation, adsorption, or electrostatic interactions, resulting in nanocapsules, micelles, and diverse morphologies and shapes, as well as varying release profiles [139]. Considering that, to reach their
PDF
Album
Review
Published 10 Oct 2025

Advances of aptamers in esophageal cancer diagnosis, treatment and drug delivery

  • Yang Fei,
  • Hui Xu,
  • Chunwei Zhang,
  • Jingjing Wang and
  • Yong Jin

Beilstein J. Nanotechnol. 2025, 16, 1734–1750, doi:10.3762/bjnano.16.121

Graphical Abstract
  • , coupling drugs, covalent binding with siRNA, and chemical modification [34][35] to promote their role in cancer drug delivery. Conventional drug delivery systems, including metal nanoparticles, nanohydrogels, liposomes, and polymeric micelles [36][37][38], have gained widespread adoption due to their
  • help of aptamers. Common nanocarrier systems, including micelles, liposomes, metal nanoparticles, and solid lipid nanoparticles, demonstrate well-established fabrication protocols, yet often face challenges with in vivo stability. Emerging nanoplatforms, such as four-way junction RNA nanostructures
  • delivery of gene-silencing therapeutics; (2) direct intercalation of aptamers with small-molecule chemotherapeutic drugs (e.g., DOX), forming stable complexes; (3) co-encapsulation of aptamers and hydrophobic drugs into nanoparticles (e.g., liposomes or polymeric micelles) to improve drug solubility and
PDF
Album
Review
Published 06 Oct 2025

Multifunctional anionic nanoemulsion with linseed oil and lecithin: a preliminary approach for dry eye disease

  • Niédja Fittipaldi Vasconcelos,
  • Almerinda Agrelli,
  • Rayane Cristine Santos da Silva,
  • Carina Lucena Mendes-Marques,
  • Isabel Renata de Souza Arruda,
  • Priscilla Stela Santana de Oliveira,
  • Mércia Liane de Oliveira and
  • Giovanna Machado

Beilstein J. Nanotechnol. 2025, 16, 1711–1733, doi:10.3762/bjnano.16.120

Graphical Abstract
  • efficacy and safety for ocular administration. Keywords: eye drops; micelles; low-energy method; ophthalmic vehicle; sample dilution; stability; Introduction Dry eye disease (DED) is a multifactorial condition affecting the ocular surface, characterized by changes in tear fluid composition and/or
  • micelles (single-layered lipid structures) [43]. The hydrophilic portion of lecithin consists of phospholipids, while the presence of unsaturated and/or saturated fatty acids determines its hydrophobic characteristics, thereby influencing its hydrophilic–lipophilic balance (HLB) values [44]. However
  • its polar portions, and the length of its hydrophobic chain [49]. PPC values below 0.5 indicate the formation of monolayer micelles, whereas values between 0.5 and 1.0 favor liposome formation [49][50]. A value of p ≥ 0.5 has been reported for phosphatidylcholine, indicating that lecithin can form
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2025

Prospects of nanotechnology and natural products for cancer and immunotherapy

  • Jan Filipe Andrade Santos,
  • Marcela Bernardes Brasileiro,
  • Pamela Danielle Cavalcante Barreto,
  • Ligiane Aranha Rocha and
  • José Adão Carvalho Nascimento Júnior

Beilstein J. Nanotechnol. 2025, 16, 1644–1667, doi:10.3762/bjnano.16.116

Graphical Abstract
  • light, synthesis in reverse micelles, and condensation processes [148]. Gold nanoparticles have great benefits for cancer and immunotherapy, providing increased efficiency and effectiveness by acting as immune regulators, enhancing the delivery of antitumor drugs, and improving biocompatibility
PDF
Album
Review
Published 22 Sep 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • copolymers, exhibit good stability and cargo-retention efficiency, making them ideal for cytosolic drug delivery [79]. Polymeric micelles, with a hydrophilic core and hydrophobic outer shell, protect aqueous drug cargo and improve circulation time, often being used for the delivery of cancer therapeutics [80
  • micelles [102]. The nano-encapsulated complexes maintained their antibacterial properties, improving solubility and stability. In addition, reduced toxicity and side effects were observed for the nano-encapsulated Ag-NHC complexes compared to the free metallodrug. Additionally, the encapsulation system
  • zebrafish embryo model, showing improved survival rates against pneumococcal infections on treatment with auranofin-loaded NPs compared to free auranofin. In another example, the gold(III) bisdithiolate complex 11 (Figure 4) was encapsulated in block copolymer micelles (BCMs) to improve solubility
PDF
Album
Review
Published 15 Aug 2025

Investigation of the solubility of protoporphyrin IX in aqueous and hydroalcoholic solvent systems

  • Michelly de Sá Matsuoka,
  • Giovanna Carla Cadini Ruiz,
  • Marcos Luciano Bruschi and
  • Jéssica Bassi da Silva

Beilstein J. Nanotechnol. 2025, 16, 1209–1215, doi:10.3762/bjnano.16.89

Graphical Abstract
  • min. The dissolution profiles of the micellar systems were also evaluated using the Korsmeyer–Peppas model with lag time (tlag), which indicated a Fickian diffusion mechanism, preceded by a thermodynamically driven accommodation stage of PpIX into the micelles. The solubility of PpIX ranged from 0.138
  • properties, capable of forming micelles that encapsulate PpIX, increasing its solubility and facilitating its administration [7][11][12]. In this context, poloxamer 407 (P407) is notable for its biocompatibility and ability to form stable nanometric micelles [8][13][14]. Its amphiphilic nature allows for the
  • self-assembly of monomers into micelles with a hydrophobic core of polypropylene oxide (PPO) and a hydrophilic corona of polyethylene oxide (PEO), creating an environment suitable for the encapsulation of hydrophobic drugs such as PpIX [15]. These micelles enhance drug solubility, protect against
PDF
Album
Letter
Published 29 Jul 2025

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
PDF
Album
Review
Published 04 Jul 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • interactions between n-mers (oligomers formed from a defined number of monomers), or from non-specific interactions, akin to micelles. The precise mechanisms underlying the formation of AβOs during the growth of AβFs remain elusive. However, researchers have identified three main pathways to explain this
PDF
Album
Review
Published 22 Apr 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
  • systems for cancer therapy, Kim et al. employed PLL in the synthesis of dually stabilised triblock copolymer micelles for the systemic delivery of phosphorothioate ASOs (metastasis associated lung adenocarcinoma transcript 1 lncRNA-targeted ASO (MALAT1-ASO) and GL3 luciferase-targeted ASO (GL3-ASO
  • )) targeting solid tumours [66]. Triblock copolymers comprising poly(2-ethyl-2-oxazoline) (PEtOx), poly(2-n-propyl-2-oxazoline) (PnPrOx), and PLL (Mw = 6.9 kDa, degree of polymerization (DP) = 42) segments allowed for the formation of compartmentalised micelles bearing a hydrophilic PEtOx shell, a
  • crucial role in gene silencing since it enabled the formation of (Luc-ASO-HE12):PEI–DNA micelles, which provided greater stability and protection of antisense nucleotides. This resulted in enhanced cell uptake and transfection activity when compared to free ASO and Luc-ASO-(HE-HEG)6 complexes
PDF
Album
Review
Published 27 Mar 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2025

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • (5–50 µL) results in the controlled desorption of CTAB from the metal surface. A recent study demonstrated the ability of NaOH to interfere with CTAB micelles, where the pH value played a key role [33]. Optimized conditions enabled the linker-free sensing of heavy metal ions (Figure 1c
  • plasmons due to the easy desorption of CTAB in the presence of NaOH, which is not observed in the case of small gold nanorods and nanospheres. The CTAB is tightly packed on short nanorods and nanospheres [43]. It was reported that NaOH significantly alters the micelles of quaternary ammonium surfactants
  • CTAB micelles without hampering the physicochemical properties of the synthesized nanoparticles. This weakening of CTAB solves the persistent problem of surface modification or the use of linker molecules with CTAB-capped nanoparticles for sensing applications. In addition, the nanorod size might be
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • than free DOX. To date, several types of nanoparticles, such as liposomes, micelles, and metal-organic frameworks, have been studied to encapsulate DOX to obtain effective and non-toxic drugs [7][8]. Great attention has been paid to nanoparticles because of their specific properties, such as small size
PDF
Album
Full Research Paper
Published 26 Sep 2024

Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis

  • Damai Ria Setyawati,
  • Fransiska Christydira Sekaringtyas,
  • Riyona Desvy Pratiwi,
  • A’liyatur Rosyidah,
  • Rohimmahtunnissa Azhar,
  • Nunik Gustini,
  • Gita Syahputra,
  • Idah Rosidah,
  • Etik Mardliyati,
  • Tarwadi and
  • Sjaikhurrizal El Muttaqien

Beilstein J. Nanotechnol. 2024, 15, 1105–1116, doi:10.3762/bjnano.15.89

Graphical Abstract
  • , liver-targeted nanocarriers are needed to increase the drug concentration in the liver with minimum off-target effects. For this purpose, both passive and active targeting strategies of nanomedicine-based drug deliveries have been studied. Liposomes, micelles, solid lipid NPs, and gold NPs are examples
  • as an absorption enhancer [51]. The therapeutic potential of curcumin using nanoformulations was reviewed by several researchers, summarizing recent curcumin encapsulation works on various NP platforms (liposomes, solid lipid NPs, micelles, and polymeric NPs) [52][53]. For example, polymeric
PDF
Album
Review
Published 23 Aug 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • well known to generate anisotropic nanomaterials. The mechanism mainly involves the arrangement of surfactant micelles which dictates anisotropy in nanoparticle during synthesis. A seed is a tiny crystal of ≈2–3 nm that initiates growth of a nanoparticle when introduced in a proper growth solution. The
  • structures, micelles with longer carbon tail lengths form more compact bilayer structures and vice versa. Also, the density of mixed micellar structure of CTAB is higher and is followed by MTAB and DTAB, respectively; thus, resulting in the formation of AuNMs of different aspect ratios. The corroboration of
  • DTAB-AuNM, respectively. Growth mechanism of gold nanomakura particles (AuNM). (a) AuNM surrounded by surfactant micelles; (b) growth facet of AuNM; and (c) stepwise growth mechanism during AuNM formation. (a) Seed-mediated synthesis of CTAB-capped AuNR. (b) Seedless synthesis of DTAB-capped AuNR. (c
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • be able to do it? The answer is more political than technical. A search conducted on PubMed (17 November 2023), employing the following keywords (articles make no distinction between treatment and diagnosis): “Chagas and liposomes”, “Chagas and nanoparticles”, “Chagas and micelles”, “cruzi and
  • liposomes”, “cruzi and nanoparticles”, “cruzi and micelles”; “leishmania and liposomes”, “leishmania and nanoparticles”, “leishmania and micelles”; “malaria and liposomes”, “malaria and nanoparticles”, “malaria and micelles”, “plasmodium and liposomes”, “plasmodium and nanoparticles”, and “plasmodium and
  • micelles”. In vitro performance of BNZ-based nanomedicines.a In vivo performance of oral BNZ-based nanomedicines.a In vivo performance of nanomedicines based on non-approved drugs.
PDF
Album
Review
Published 27 Mar 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • oil–surfactant core–shell structure within the micelles. Consequently, a lower amount of monoterpenes is released into the surrounding medium [42]. Among the mathematical models used to study drug kinetics, the Korsmeyer–Peppas release model proved to be the most suitable for our formulations (Table 4
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • systems [19], nanoparticles [20], nanoliposomes [21], micelles [22], and nanocrystals [23] have been utilized. These systems can promote (i) protection of the drug against degradation in physiological media, (ii) increase in drug solubility, and (iii) modification/targeting of the drug enabling transport
PDF
Album
Review
Published 04 Jan 2024

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • polymeric (e.g., core–shell micelles), oligomeric (e.g., lipid nanoparticles), or biomacromolecular (e.g., protein nanoparticles) components complicates matters only further by generating a higher-than-normal background through non-specific interactions with the assay media. In addition, a significant bias
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • (non-adsorbed) surfactant can be in the form of micelles that coexist with the nanoemulsion droplets. The kinetics of surfactant adsorption during droplet formation, droplet coarsening, as well as uncertainties in the estimation of as could also explain the divergences between calculated and
  • surface charge (ca. −11 mV). The drug encapsulation efficiencies were higher than 98%, although loadings were not enough to achieve therapeutic concentrations. The GAL release from the nanoparticles was slower than that from aqueous GAL solutions and surfactant micelles. Viabilities of HeLa and SH-SY5Y
PDF
Album
Review
Published 13 Mar 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • )-functionalized nanoporous silica particles loaded with a poly(ʟ-glutamic acid) pH-cleavable linker–doxorubicin conjugate, which self-assembles into NPs after its release from the iNPG [114]. Li et al. designed a multistage nanocarrier for NSCLC targeting, composed of icotinib-loaded amphiphilic chitosan micelles
PDF
Album
Review
Published 22 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • enhances the hydrophobic interactions of the poly(N-isopropylacrylamide) segments, stabilizing the hydrogel. The anticancer drug DOX encapsulated in the hydrophobic core is slowly released through the dissolution of the hydrogel to micelles. By modifying β-CyD with both N-acetyl-ʟ-cysteine and arginine
PDF
Album
Review
Published 09 Feb 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • with two patches functionalized with metal-coordination-based recognition units [20], and by co-assembly of block copolymer micelles and hard nanoparticles [21]. Particles with two patches located at opposite poles have been assembled into a Kagome lattice by hydrophobic interactions [22], into chains
  • -controlled patch-to-particle size ratio (PPSR) into dimers, trimers, tetramers, and spherical micelles at a low incubation time in mixtures of tetrahydrofuran (THF) and ethanol [32]. Here, we extend the study to 1-PSN with smaller PPSR values and to the use of another poor solvent for the PS patch (i.e
  • previous work on the assembly of 1-PSN with larger PPSR ranging from 0.69 to 1.54 in a THF/ethanol mixture has shown that colloids with a low aggregation number (e.g., dimers, trimers, tetramers, and spherical micelles) could be obtained at a low incubation time. Also, the higher the PPSR value, the more
PDF
Album
Full Research Paper
Published 06 Jan 2023

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • introduced into systems whose purpose is to provide the expected concentration in the treated tissue for the desired time period. The most frequently studied and described are liposomes [60][61], micelles [60][62], microparticles [63][64][65], nanoparticles [66][67], micro- [68][69], and nanoemulsions [70
PDF
Album
Review
Published 24 Oct 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • ), and it remains a challenge to increase drug loading. Besides, the high cost and the complexity of nanoformulation production narrow the accessibility [32]. Regarding dendrimers, micelles, and polymeric nanoparticles, there are also issues with long-term stability, low drug loading efficiency, and
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • delivery [50], in vitro diagnosis [51], in vivo imaging [52], and TE purposes. Various NPs can be prepared in the form of liposomes, nanocapsules, micelles, dendrimers, and nanospheres based on their composition and method of preparation. Basically, NPs are designed to function as carriers for bioactive
PDF
Album
Review
Published 11 Apr 2022
Other Beilstein-Institut Open Science Activities