Search results

Search for "zinc" in Full Text gives 254 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The cement of the tube-dwelling polychaete Sabellaria alveolata: a complex composite adhesive material

  • Emilie Duthoo,
  • Aurélie Lambert,
  • Pierre Becker,
  • Carla Pugliese,
  • Jean-Marc Baele,
  • Arnaud Delfairière,
  • Matthew J. Harrington and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2025, 16, 1998–2014, doi:10.3762/bjnano.16.138

Graphical Abstract
  • their byssus [40]. For instance, His residues in the His-rich terminal domains of preCols, the collagenous proteins that make up over 95% of the byssal threads core, can form metal coordination cross-links with zinc ions [41][42]. In the byssal plaque, mfp-4, the protein linking the plaque to the thread
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2025

Laser ablation in liquids for shape-tailored synthesis of nanomaterials: status and challenges

  • Natalie Tarasenka

Beilstein J. Nanotechnol. 2025, 16, 1963–1997, doi:10.3762/bjnano.16.137

Graphical Abstract
  • mercaptan using millisecond laser pulses. The authors propose a mechanism in which zinc sulfide is formed via the reactions of zinc species formed in plasma with sulfur-containing reactive species formed as a result of liquid decomposition. The formation of nanowires was only observed in a narrow window of
PDF
Album
Perspective
Published 10 Nov 2025

On the road to sustainability – application of metallic nanoparticles obtained by green synthesis in dentistry: a scoping review

  • Lorena Pinheiro Vasconcelos Silva,
  • Joice Catiane Soares Martins,
  • Israel Luís Carvalho Diniz,
  • Júlio Abreu Miranda,
  • Danilo Rodrigues de Souza,
  • Éverton do Nascimento Alencar,
  • Moan Jéfter Fernandes Costa and
  • Pedro Henrique Sette-de-Souza

Beilstein J. Nanotechnol. 2025, 16, 1851–1862, doi:10.3762/bjnano.16.128

Graphical Abstract
  • , particularly in dentistry. This scoping review examines the rising focus on these nanoparticles regarding their antimicrobial, regenerative, and therapeutic potential in dental applications. Among the metals studied, silver and zinc oxide nanoparticles dominate because of their broad-spectrum antimicrobial
  • widely studied nanomaterials are metallic nanoparticles, particularly silver (AgNPs), gold (AuNPs), and copper (CuNPs), and various metal oxide nanoparticles such as zinc oxide (ZnO-NPs), due to their high surface-to-volume ratio, chemical stability, and distinctive optical and antimicrobial properties
  • biomaterials [16][17]. Owing to their high adaptability to various metals, including silver, zinc, iron, and platinum, their operational simplicity, and the ability to control nanoparticle size and morphology by selecting plant extracts and reaction conditions, green synthesis is gaining increasing prominence
PDF
Album
Review
Published 22 Oct 2025

Piezoelectricity of layered double hydroxides: perspectives regarding piezocatalysis and nanogenerators

  • Evgeniy S. Seliverstov,
  • Evgeniya A. Tarasenko and
  • Olga E. Lebedeva

Beilstein J. Nanotechnol. 2025, 16, 1812–1817, doi:10.3762/bjnano.16.124

Graphical Abstract
  • addition to zinc-aluminum LDHs, piezo-photocatalytic properties have also been studied for Ni/Fe LDH [15]. A Ni/Fe-LDH/Bi2MoO6−x composite has been designed for the piezo-photocatalytic N2 oxidation to NO3−. The obtained material displayed a high nitric acid production rate (7.23 mg·g−1·h−1). Experimental
PDF
Album
Review
Published 20 Oct 2025

Transient electronics for sustainability: Emerging technologies and future directions

  • Jae-Young Bae,
  • Myung-Kyun Choi and
  • Seung-Kyun Kang

Beilstein J. Nanotechnol. 2025, 16, 1545–1556, doi:10.3762/bjnano.16.109

Graphical Abstract
  • has prompted further exploration of chemically analogous materials, such as germanium [45][46], silicon–germanium alloys [45], amorphous semiconductors [45], indium–gallium–zinc oxide (IGZO) [47], and metal oxides such as zinc oxide [48], for their potential as bioresorbable semiconductors. These
  • electronic systems. Traditionally studied bioresorbable metals include magnesium, zinc, and their alloy AZ31B [51][52]. Mg has been utilized as a transient conductive material in implantable pressure and temperature sensors, where it served as the interconnects and electrodes and underwent complete
  • bioresorption in vivo [14]. Zinc has been proposed for use in bioabsorbable vascular stents, demonstrating ideal degradation behavior and mechanical integrity in animal models [51]. AZ31B, along with molybdenum and tungsten, have been investigated as a substrate and conductive layer in transient electronics due
PDF
Album
Perspective
Published 04 Sep 2025

Dendrimer-modified carbon nanotubes for the removal and recovery of heavy metal ions from water

  • Thao Quynh Ngan Tran,
  • Huu Trung Nguyen,
  • Subodh Kumar and
  • Xuan Thang Cao

Beilstein J. Nanotechnol. 2025, 16, 1522–1532, doi:10.3762/bjnano.16.107

Graphical Abstract
  • using 30 mL of distilled water through a ring-opening mechanism [51]. Then, 0.4 g of freshly prepared MA was mixed with 3.0 g of a DES synthesized by the reaction of choline chloride and zinc chloride in a 1:2 molar ratio under continuous stirring at room temperature until a homogeneous liquid was
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
  • pulse excitation (532 nm). The morphological changes induced by thermal and photochemical effects were found to influence the optical properties of these particles. Another commonly reported semiconductor material by LFL is zinc oxide (ZnO) [33][34]. The optical properties, particularly the UV emission
  • flake-like aggregated structures with an average particle size of 77 nm were observed [114]. ZnO NPs were prepared by laser ablation of metallic zinc powders suspended in water, and thin films were fabricated by drop casting [115]. Figure 11a represents the UV–vis emission intensity ratio of ZnO
PDF
Album
Review
Published 27 Aug 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • and B. subtilis revealed that the Cu-loaded composites were active against Gram-positive bacteria but ineffective against Gram-negative strains. This difference is likely due to the hydrophobic nature of the nanofiber membranes, which may hinder interaction with Gram-negative bacteria. Zinc complexes
  • Zinc complexes have demonstrated remarkable activity against both Gram-positive and Gram-negative bacteria. While zinc complexes show promise in their free form, their full potential is often limited by solubility, stability, and targeted delivery challenges. Encapsulation addresses these issues by
  • advanced topical antibacterial treatments [120]. Different nanosystems have been explored to enhance the effectiveness of zinc complexes, including their incorporation into silica NPs. In this context, the Zn(II)–Schiff base complex 15 (Figure 4) was encapsulated in sol–gel-derived silica nanoparticles
PDF
Album
Review
Published 15 Aug 2025

Ferroptosis induction by engineered liposomes for enhanced tumor therapy

  • Alireza Ghasempour,
  • Mohammad Amin Tokallou,
  • Mohammad Reza Naderi Allaf,
  • Mohsen Moradi,
  • Hamideh Dehghan,
  • Mahsa Sedighi,
  • Mohammad-Ali Shahbazi and
  • Fahimeh Lavi Arab

Beilstein J. Nanotechnol. 2025, 16, 1325–1349, doi:10.3762/bjnano.16.97

Graphical Abstract
  • often accumulate PUFAs due to elevated expression of zinc finger E-box binding homeobox 1 (ZEB1), elongation of very long-chain fatty acid protein 5 (ELOVL5), or fatty acid desaturase 1 (FADS1), which make them vulnerable to ferroptosis. In a similar manner, dedifferentiated melanoma cell subtypes are
PDF
Album
Review
Published 14 Aug 2025

Chitosan nanocomposite containing rotenoids: an alternative bioinsecticidal approach for the management of Aedes aegypti

  • Maria A. A. Bertonceli,
  • Vitor D. C. Cristo,
  • Ivo J. Vieira,
  • Francisco J. A. Lemos,
  • Arnoldo R. Façanha,
  • Raimundo Braz-Filho,
  • Gustavo V. T. Batista,
  • Luis G. M. Basso,
  • Sérgio H. Seabra,
  • Thalya S. R. Nogueira,
  • Felipe F. Moreira,
  • Arícia L. E. M. Assis,
  • Antônia E. A. Oliveira and
  • Kátia V. S. Fernandes

Beilstein J. Nanotechnol. 2025, 16, 1197–1208, doi:10.3762/bjnano.16.88

Graphical Abstract
  • the nanocomposite to reduce potential environmental damage, such as those reported in the literature for some metal-decorated nanomaterials and their derivatives (silver, gold, copper, zinc, titanium, and silicon) that can be highly toxic to non-target organisms in the environment [18]. The
PDF
Album
Full Research Paper
Published 28 Jul 2025

Electronic and optical properties of chloropicrin adsorbed ZnS nanotubes: first principle analysis

  • Prakash Yadav,
  • Boddepalli SanthiBhushan and
  • Anurag Srivastava

Beilstein J. Nanotechnol. 2025, 16, 1184–1196, doi:10.3762/bjnano.16.87

Graphical Abstract
  • Information Technology, Allahabad, UP-211015, India 10.3762/bjnano.16.87 Abstract Zinc sulfide nanotubes have garnered significant attention as potential candidates for chemical sensing applications owing to their exceptional structural, electronic, and optical properties. In this study, we employed density
  • spectra and optical conductivity peaks, highlight the potential of ZnS NT for designing sensitive and reusable CP gas sensors. Keywords: chemical sensor; chloropicrin (CP); density functional theory; zinc sulfide nanotubes (ZnS NTs); Introduction Chloropicrin (CP), also known as trichloronitromethane
  • their bulk counterparts [9][10][11][12][13][14]. Zinc sulfide (ZnS) attracts considerable attention among various nanomaterials due to its unique properties. Nanostructured ZnS with different morphologies, including nanotubes, nanowires, nanoparticles, and nanosheets has been extensively investigated
PDF
Album
Full Research Paper
Published 25 Jul 2025

Fabrication of metal complex phthalocyanine and porphyrin nanoparticle aqueous colloids by pulsed laser fragmentation in liquid and their potential application to a photosensitizer for photodynamic therapy

  • Taisei Himeda,
  • Risako Kunitomi,
  • Ryosuke Nabeya,
  • Tamotsu Zako and
  • Tsuyoshi Asahi

Beilstein J. Nanotechnol. 2025, 16, 1088–1096, doi:10.3762/bjnano.16.80

Graphical Abstract
  • phthalocyanine (AlClPc, 98%), iron(II) phthalocyanine (FePc, 95%), zinc phthalocyanine (ZnPc, >95%), and 1,3-diphenylisobenzofuran (DBPF) were purchased from TCI Chemicals. All materials were used without further purification. Aqueous solution samples were prepared with deionized water. Fabrication and
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2025

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • Manu Bura Divya Gupta Arun Kumar Sanjeev Aggarwal Department of Physics, Kurukshetra University, Kurukshetra, 136119, India 10.3762/bjnano.16.66 Abstract Radio frequency-sputtered zinc oxide films are implanted with 30 keV Ar+ ions at various fluences ranging from 1 × 1015 to 2 × 1016 ions·cm−2
  • , Urbach energy, and optical bandgap. The low reflectance values of implanted films assure their suitability as transparent windows and anti-reflective coating in various optoelectronic devices. Keywords: AFM; diffuse reflectance; GXRD; polycrystalline; ZnO films; Introduction Zinc oxide has emerged as a
  • ] reported the presence of an A1 (LO) Raman mode and a disorder-induced band at low wavenumbers in cadmium-doped zinc oxide films irradiated using 120 MeV Ag9+ and 80 MeV O6+ ions at fluences of 1 × 1013 and 3 × 1013 ions·cm−2. Further, few studies [16][17] reported the emergence of optical longitudinal
PDF
Album
Full Research Paper
Published 11 Jun 2025

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • graphene nanosheets in water-intercalated AB bilayer graphene structures. A layer of water molecules significantly decreases the intersheet van der Waals force. A novel hydrogel of graphene oxide–silica gel–zinc hydroxide (GO-SG-ZH) is experimentally synthesized to demonstrate the advantages of hydrated
  • , bandgap energy, and formation energy of the molecular system of bilayer graphene intercalated with a water layer. In the experimental aspect, green chemistry methods were applied for synthesizing GO nanosheets, rice-husk-derived silica gel (SG), nanosilica–zinc hydroxide nanoparticles (SG-ZH), and
  • graphene oxide–nanosilica–zinc hydroxide nanocomposites (GO-SG-ZH). Graphite oxidation reaction in a cascade design gives good efficiency values of energy, chemical reaction, and reaction time [14][15]. The recycling of rice husk ash waste into nanosilica products is eco-friendly and sustainable for
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Synthesis of a multicomponent cellulose-based adsorbent for tetracycline removal from aquaculture water

  • Uyen Bao Tran,
  • Ngoc Thanh Vo-Tran,
  • Khai The Truong,
  • Dat Anh Nguyen,
  • Quang Nhat Tran,
  • Huu-Quang Nguyen,
  • Jaebeom Lee and
  • Hai Son Truong-Lam

Beilstein J. Nanotechnol. 2025, 16, 728–739, doi:10.3762/bjnano.16.56

Graphical Abstract
  • –124,000, Thermo Scientific Chemicals, USA), GA (50%) (Zhanyun, China), calcium chloride anhydrous (Xilong, China), and zinc sulfate heptahydrate (Xilong, China). All reagents were of analytical grade, and deionized water was used for all experiments. Experimental optimization MODDE 5.0 software was
  • their mechanical strength and hydrophobicity. Recent studies have revealed that inorganic salt mixtures, such as zinc chloride and calcium chloride, effectively dissolve cellulose, facilitating the fabrication of cellulose membranes for gas separation and organic pollutant removal [38][39]. Specifically
PDF
Album
Full Research Paper
Published 27 May 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • temperatures of 550–650 °C [13]. Also, CNFs were produced by loading a stainless-steel autoclave with 7.50 mL of diethyl ether and a solution containing 1.00 g of zinc powder and 0.50 g of iron powder. The sealed autoclave was heated to 650 °C and kept overnight for the hydrothermal reaction. After cooling to
PDF
Album
Full Research Paper
Published 23 Apr 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
PDF
Album
Review
Published 22 Apr 2025

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • as an effective tool. Exposure to 120 MeV silver ion irradiation results in the complete amorphization of the B2 phase in CdO nanoparticles, while the crystalline hexagonal wurtzite phase of zinc oxide (ZnO) remains intact. In contrast, 80 MeV oxygen ion irradiation preserves the B2 phase and
  • ; Introduction Zinc oxide (ZnO)-based thin films are of significant interest due to their wide bandgap value (3.37 eV at room temperature), transparent electrical conduction, and large excitonic binding energy (60 meV) [1]. In contrast, cadmium oxide (CdO) exhibits a lower bandgap of 2.2 eV, along with high
  • with 40% cadmium concentration in zinc oxide (ZnO) were synthesized using the sol–gel chemical route method, as detailed in our previous publication [1]. The irradiation experiments were performed using the 15 UD tandem Pelletron accelerators at the Inter-University Accelerator Centre (IUAC), New Delhi
PDF
Album
Full Research Paper
Published 17 Apr 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • , India Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India 10.3762/bjnano.16.33 Abstract Special features of zinc oxide nanoparticles have drawn a lot of interest due to their wide bandgap, high surface area, photocatalytic activity, antimicrobial
  • employed as effective electron mediators [9]. Zinc oxide nanoparticles have gained a lot of attention due to their unique features, such as wide bandgap (approximately 3.37 eV), excellent electron transportation, piezoelectric behavior, semiconductor nature, low toxicity, and enhanced electrochemical
  • response, and have a vast range of uses. Zinc oxide shows excellent features, such as nanoscale particles, highly crystalline nature, tunable shape, size and density, and a high aspect ratio. In summary, ZnO nanoparticles offer a versatile platform for technological advancements across fields such as
PDF
Album
Full Research Paper
Published 26 Mar 2025

Engineered PEG–PCL nanoparticles enable sensitive and selective detection of sodium dodecyl sulfate: a qualitative and quantitative analysis

  • Soni Prajapati and
  • Ranjana Singh

Beilstein J. Nanotechnol. 2025, 16, 385–396, doi:10.3762/bjnano.16.29

Graphical Abstract
  • ) and Bradford reagent (Cat. No. 19219) were purchased from SRL Chemicals (India). NIST-grade standards of arsenic (As3+), aluminium (Al3+), cadmium (Cd2+), zinc (Zn2+), mercury (Hg2+), nickel (Ni2+), copper (Cu2+), chromium (Cr3+), lead (Pb2+), iron (Fe3+), and cobalt (Co2+) (Cat. No. 041865), as well
PDF
Album
Full Research Paper
Published 20 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • Kafi Devi Usha Rani Arun Kumar Divya Gupta Sanjeev Aggarwal Ion Beam Centre, Department of Physics, Kurukshetra University, Kurukshetra-136119, India 10.3762/bjnano.16.25 Abstract In this study, zinc telluride (ZnTe) films were grown on quartz substrates at room temperature, 300 °C, 400 °C, 500
  • to quantum confinement size effects, metal chalcogenides are of importance in different technological domains. Metal chalcogen compounds are composed of a transition metal with one or more members of the chalcogen family, and they exhibit semiconducting properties. Zinc telluride (ZnTe) is a binary
  • II–VI semiconductor with a direct bandgap of 2.26 eV, which lies in the visible range of the electromagnetic spectrum. ZnTe is a p-type semiconductor because of zinc vacancies and has a low electron affinity of 3.53 eV at room temperature [5]. It exists in both zincblende and wurtzite structures
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • , oxides of titanium, zinc, bismuth, and tungsten, as well as graphene, graphitic carbon nitride (g-C3N4), and their substitute materials are commonly synthesized and used as photocatalysts for the removal of antibiotics from contaminated sources. These materials are synthesized through a variety of
  • TC, with an efficiency of approximately 96%, which is 1.56 times higher than that of pure TiO2 photocatalysts. Zinc oxide-based materials Zinc oxide (ZnO) is another widely used semiconductor material that exhibits enhanced sensitivity to ultraviolet (UV) light. It possesses a substantial surface
  • photocatalysts to remove antibiotics from water is compiled below in Table 2. Bismuth-based materials Although the activity of titanium dioxide- and zinc oxide-based photocatalysts has been increased through modification, they still absorb visible light poorly. Bi-based photocatalysts have been widely employed
PDF
Album
Review
Published 25 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • chemical modifications and/or coupling with hydrophilic polymers. TMZ was successfully incorporated in magnetic NPs [36], mesoporous silica NPs [37], and NPs made of silver [38], zinc oxide [39], and gold [40], all of them showing high accumulation in tumor cells and cytotoxic activity in vitro and in vivo
PDF
Album
Full Research Paper
Published 19 Feb 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • . Furthermore, they require only small quantities for utilization [8]. Several types of nanoparticles have been employed as carriers for rhizobacteria inoculants, including silica nanoparticles [9], clay nanoparticles [8], carbon nanoparticles [10], zinc oxide nanoparticles [11], and calcium carbonate
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • -case basis. An entirely different approach to improving the MOF–polymer interface is shown in the study by Maleh and Raisi [91], where ZIF-8 MOFs were grown in situ in a Pebax® 2533 polymer matrix. The authors prepared a polymer solution in ethanol containing well-dispersed zinc nitrate hexahydrate and
PDF
Album
Supp Info
Review
Published 12 Feb 2025
Other Beilstein-Institut Open Science Activities