Beilstein J. Nanotechnol.2014,5, 219–233, doi:10.3762/bjnano.5.24
] atoms has been frequently used to enhance or tune their physicochemical properties. Among the elemental dopants, nitrogen emerges as of particular interest in electronics since N-CNTs should be characterized by a higher electrical conductivity (n-doping). Consequently, the significance of N-CNTs in a
plasma enhancements, with typical parameters of the synthesis being the selection of the nitrogen source and/or the catalyst, and temperature. The literature survey (Table 1) shows that the N-doping of CNTs usually induced lattice deformations, i.e., the formation of regular and irregular compartments
it is the presence of nitrogen species, which affects the growth of N-CNTs and, further, their morphology. Additionally, ID/IG ratios increase with an increased N-doping at higher temperature. Continuing our insights into the mechanism of N-CNTs growth, we have investigated particular stages of the
PDF
Figure 1:
Injection c-CVD furnace and constant parameters for the synthesis of aligned N-CNT arrays.