Search results

Search for "RF magnetron sputtering" in Full Text gives 29 result(s) in Beilstein Journal of Nanotechnology.

Nanostructuring of GeTiO amorphous films by pulsed laser irradiation

  • Valentin S. Teodorescu,
  • Cornel Ghica,
  • Adrian V. Maraloiu,
  • Mihai Vlaicu,
  • Andrei Kuncser,
  • Magdalena L. Ciurea,
  • Ionel Stavarache,
  • Ana M. Lepadatu,
  • Nicu D. Scarisoreanu,
  • Andreea Andrei,
  • Valentin Ion and
  • Maria Dinescu

Beilstein J. Nanotechnol. 2015, 6, 893–900, doi:10.3762/bjnano.6.92

Graphical Abstract
  • obtained by RF magnetron sputtering with 50:50 initial atomic ratio of Ge:TiO2. Laser irradiation was performed by using the fourth harmonic (266 nm) of a Nd:YAG laser. The laser-induced nanostructuring results in two effects, the first one is the appearance of a wave-like topography at the film surface
  • GeTiO matrix. Experimental Amorphous GeTiO films with a thickness of 330 nm were deposited by RF magnetron sputtering on Si(100) wafer substrates using Ge:TiO2 with 50:50 atomic ratio. Details on the film deposition are found in [23]. These GeTiO amorphous films were irradiated with laser fluences from
  • results from the RF magnetron sputtering films preparation. This shows that about 1/3 of the Ge content is lost from the surface layer affected by the laser radiation, and 2/3 of it can be segregated in amorphous Ge nanoparticles. Discussion The nanostructure formed at the GeTiO film surface by pulsed
PDF
Album
Full Research Paper
Published 07 Apr 2015

Integration of ZnO and CuO nanowires into a thermoelectric module

  • Dario Zappa,
  • Simone Dalola,
  • Guido Faglia,
  • Elisabetta Comini,
  • Matteo Ferroni,
  • Caterina Soldano,
  • Vittorio Ferrari and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2014, 5, 927–936, doi:10.3762/bjnano.5.106

Graphical Abstract
  • dried with synthetic air. Gold nanoparticles have been deposited by RF magnetron sputtering (70 W Ar plasma for 5 s at room temperature, pressure 5 × 10−3 mbar) on the substrate, as they will act as catalyst for the nanowire growth. This technique was very easy and straightforward to use and allowed a
  • alumina substrates [24]. Samples have been first cleaned in acetone using ultrasonic bath for 10 min and then dried with synthetic air. Then, a thin layer of metallic Cu has been deposited on samples by RF magnetron sputtering (50 W Ar plasma at room temperature, pressure 5 × 10−3 mbar, thickness 1 μm
  • , with an argon flow of 10 sccm (30 min deposition). Afterwards, copper oxide nanowires were synthesized by thermal oxidation. Copper metallic film was deposited via RF magnetron sputtering, as described before, using a 50 W argon plasma at room temperature (thickness 2 µm, 5 × 10−3 mbar pressure
PDF
Album
Full Research Paper
Published 30 Jun 2014

Deformation-induced grain growth and twinning in nanocrystalline palladium thin films

  • Aaron Kobler,
  • Jochen Lohmiller,
  • Jonathan Schäfer,
  • Michael Kerber,
  • Anna Castrup,
  • Ankush Kashiwar,
  • Patric A. Gruber,
  • Karsten Albe,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2013, 4, 554–566, doi:10.3762/bjnano.4.64

Graphical Abstract
  • frequency (RF) magnetron sputtering using 2’’ diameter planar targets with 99.95% purity. Three sets of pure Pd samples were prepared with constant sputtering power of 60 W at a working gas pressure (Ar) of 0.005 mbar at room temperature. Pd films of 1 µm nominal thickness were grown in 100 steps of 10 nm
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2013

Functionalised zinc oxide nanowire gas sensors: Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces

  • Eric R. Waclawik,
  • Jin Chang,
  • Andrea Ponzoni,
  • Isabella Concina,
  • Dario Zappa,
  • Elisabetta Comini,
  • Nunzio Motta,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2012, 3, 368–377, doi:10.3762/bjnano.3.43

Graphical Abstract
  • interacted with residual oxygen to give ZnO nanowires [13]. The stabilised samples were then provided by interdigitated Pt electrodes deposited by RF magnetron sputtering, while on the back side a Pt meander was deposited to act as heater (by Joule effect) and temperature sensor. Ex situ functionalisation of
PDF
Album
Full Research Paper
Published 02 May 2012
Other Beilstein-Institut Open Science Activities