Search results

Search for "lipid bilayer" in Full Text gives 32 result(s) in Beilstein Journal of Nanotechnology.

Single pyrimidine discrimination during voltage-driven translocation of osmylated oligodeoxynucleotides via the α-hemolysin nanopore

  • Yun Ding and
  • Anastassia Kanavarioti

Beilstein J. Nanotechnol. 2016, 7, 91–101, doi:10.3762/bjnano.7.11

Graphical Abstract
  • , University of Utah. The KCl solution was used as the electrolyte to fill the solution reservoir and the GNM capillary. A voltage was applied across the GNM between two Ag/AgCl electrodes placed inside and outside of the capillary. A lipid bilayer was deposited across the GNM orifice as indicated by a
  • resistance increase from ca. 10 MΩ (associated with the open GNM) to ca. 100 GΩ. A pressure of 20 to 40 mmHg was applied to the inside of the GNM capillary using a syringe, allowing the lipid bilayer to be functional for the protein channel reconstitution. Next, 0.2 µL of α-HL monomer solution at 1 mg/mL was
PDF
Album
Full Research Paper
Published 22 Jan 2016

Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state

  • Florian G. Strobl,
  • Florian Seitz,
  • Christoph Westerhausen,
  • Armin Reller,
  • Adriano A. Torrano,
  • Christoph Bräuchle,
  • Achim Wixforth and
  • Matthias F. Schneider

Beilstein J. Nanotechnol. 2014, 5, 2468–2478, doi:10.3762/bjnano.5.256

Graphical Abstract
  • particle and the membrane. As shown in [33], the interaction between a neutral (i.e., zwitterionic) lipid bilayer and negatively charged silica surface is repulsive in pure water but attractive in phosphate buffered saline. The authors also give a plausible theoretical explanation for this finding by
PDF
Album
Full Research Paper
Published 23 Dec 2014

Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

  • Marcela Elisabeta Barbinta-Patrascu,
  • Stefan Marian Iordache,
  • Ana Maria Iordache,
  • Nicoleta Badea and
  • Camelia Ungureanu

Beilstein J. Nanotechnol. 2014, 5, 2316–2325, doi:10.3762/bjnano.5.240

Graphical Abstract
  • biomimetic membranes (above 41 °C) exhibits low anisotropy and high fluorescence emission intensity due to an increase in the lipid bilayer mobility and hence the chlorophyll has the possibility to move and to minimize the energy transfer leading to fluorescence quenching. In the gel phase of the artificial
PDF
Album
Full Research Paper
Published 02 Dec 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • the spontaneous extracellular electrical activity in a murine neuronal cell line, which yielded results in good agreement with recordings made by means of conventional MEAs (Figure 5). Single-spin NV-NDs embedded in an artificial lipid bilayer [136] and in a real cell membrane, in which there is a
PDF
Album
Correction
Review
Published 23 Oct 2014

Model systems for studying cell adhesion and biomimetic actin networks

  • Dorothea Brüggemann,
  • Johannes P. Frohnmayer and
  • Joachim P. Spatz

Beilstein J. Nanotechnol. 2014, 5, 1193–1202, doi:10.3762/bjnano.5.131

Graphical Abstract
  • actin networks and talin into model cells. Keywords: actin network; cell adhesion; giant unilamellar vesicle; integrin; lipid bilayer; synthetic cell; protein reconstitution; talin; Review Introduction Since Hooke first described a biological cell in 1665 tremendous progress has been made in
  • found to quantify the binding energy of different integrin–ligand pairs under bioanalogue conditions [43]. This system was developed further to facilitate the mobility of the integrin receptors within the supported lipid bilayer. Thus, it was shown that integrin mobility controls the force-induced
  • lipid bilayer, like the membrane of natural cells. With these attributes GUVs have gained increasing importance as bottom-up model systems in synthetic biology over the past years. GUVs can be used to study cellular functions and the interplay between various proteins, which are incorporated in the
PDF
Album
Review
Published 01 Aug 2014

Large-scale analysis of high-speed atomic force microscopy data sets using adaptive image processing

  • Blake W. Erickson,
  • Séverine Coquoz,
  • Jonathan D. Adams,
  • Daniel J. Burns and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2012, 3, 747–758, doi:10.3762/bjnano.3.84

Graphical Abstract
  • routine on an example lipid bilayer of mixed composition are shown as the inputs and outputs of each major block. Each block will be discussed separately in detail. 1.1 Identify the background, generate a mask, estimate the polynomial background The purpose of this section is to identify the background
  • in the image. Panel E shows the raw data of a mixed lipid bilayer on mica. Panel F shows the results of line-by-line second-order polynomial subtraction. Panel G shows 1-D artifact correction followed by 2-D second-order polynomial subtraction. Panel H shows the results of 1-D artifact correction
  • fitting, are 2-D polynomial fits. 2-D polynomial fits can be performed by using either the whole figure for the fit, or only certain regions of the image determined by using thresholds. Figure 2 shows a comparison of different processing methods on a standard calibration grating as well as on a lipid
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2012

Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures

  • Jaydeep Bhattacharya,
  • Alexandre Kisner,
  • Andreas Offenhäusser and
  • Bernhard Wolfrum

Beilstein J. Nanotechnol. 2011, 2, 104–109, doi:10.3762/bjnano.2.12

Graphical Abstract
  • monitored by impedance spectroscopy across the nanoporous alumina membrane in real-time. Our approach offers a simple and efficient methodology to investigate the activity of transmembrane proteins or ion diffusion across membrane bilayers. Keywords: anodization; lipid bilayer; microfluidics
  • nanoporous membrane for lipid bilayer formation, the nanoporous alumina surface was first subjected to silanization. The silanization was carried out in the solution phase according to the method described by Steinle and coworkers [37][38] with slight modifications. Briefly, a 10% (v/v) solution of (3
  • whole system was then cured at 60 °C for 60 min. The lipid bilayer on the modified nanoporous alumina surface was prepared by the method of liposomal fusion [39]. The liposomes were prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, Avanti Polar Lipids, U.S.A.) by the following method
PDF
Album
Full Research Paper
Published 11 Feb 2011
Other Beilstein-Institut Open Science Activities