Search results

Search for "macropinocytosis" in Full Text gives 29 result(s) in Beilstein Journal of Nanotechnology.

Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects

  • Li Shang,
  • Karin Nienhaus,
  • Xiue Jiang,
  • Linxiao Yang,
  • Katharina Landfester,
  • Volker Mailänder,
  • Thomas Simmet and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2014, 5, 2388–2397, doi:10.3762/bjnano.5.248

Graphical Abstract
  • on the specific uptake machinery involved, these are macropinocytosis, clathrin- and caveolae-mediated endocytosis, and mechanisms that involve neither clathrin nor caveolae. The exposed functional groups on an NP surface interact with cell surface receptors and may activate the cell’s uptake
PDF
Album
Full Research Paper
Published 11 Dec 2014

Effect of silver nanoparticles on human mesenchymal stem cell differentiation

  • Christina Sengstock,
  • Jörg Diendorf,
  • Matthias Epple,
  • Thomas A. Schildhauer and
  • Manfred Köller

Beilstein J. Nanotechnol. 2014, 5, 2058–2069, doi:10.3762/bjnano.5.214

Graphical Abstract
  • through clathrin-dependent endocytosis and by macropinocytosis and that silver agglomerates were formed in the cytoplasm following the uptake of these nanoparticles [11]. There is a general consensus that dissolved silver ions are responsible for the majority of the biological effects on various cells and
PDF
Album
Full Research Paper
Published 10 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • such as macropinocytosis, clathrin- and caveolin-mediated endocytosis, and clathrin- and caveolin-independent endocytosis [81][82][83]. Other possible mechanisms such as receptor-mediated diffusion through membrane pores and passive uptake by van der Waals or steric interactions (summarized as adhesive
  • interactions) have been suggested [84]. As we have reported, silver nanoparticles were mostly taken up by hMSC through clathrin-dependent endocytosis and macropinocytosis but not through caveolin-dependent endocytosis, as shown by flow cytometry (scattergram analysis) [77]. From the literature it is known that
  • internalization of silver nanoparticles in astrocytes as in the cell types discussed above (Figure 11), inhibitors of macropinocytosis and endosomal trafficking (chloroquine and amiloride) at least partially lower the accumulation of silver nanoparticles [108]. Accumulated silver nanoparticles appear to be quite
PDF
Album
Review
Published 03 Nov 2014

Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

  • Dagmar A. Kuhn,
  • Dimitri Vanhecke,
  • Benjamin Michen,
  • Fabian Blank,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1625–1636, doi:10.3762/bjnano.5.174

Graphical Abstract
  • mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one
  • suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition
  • describes two different cellular uptake mechanisms: pinocytosis, which involves the uptake of fluids and molecules within small vesicles and phagocytosis, which is responsible for engulfing large particles (e.g., microorganisms and cell debris). Pinocytosis covers macropinocytosis, clathrin-mediated
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2014
Other Beilstein-Institut Open Science Activities