Search results

Search for "mechanical energy" in Full Text gives 29 result(s) in Beilstein Journal of Nanotechnology.

Velocity dependence of sliding friction on a crystalline surface

  • Christian Apostoli,
  • Giovanni Giusti,
  • Jacopo Ciccoianni,
  • Gabriele Riva,
  • Rosario Capozza,
  • Rosalie Laure Woulaché,
  • Andrea Vanossi,
  • Emanuele Panizon and
  • Nicola Manini

Beilstein J. Nanotechnol. 2017, 8, 2186–2199, doi:10.3762/bjnano.8.218

Graphical Abstract
  • , the slider mechanical energy is converted into crystal vibrational energy without any artificial viscous damping term affecting the slider itself. Of course, without any mechanism for dissipating this vibrational energy, the elastic substrate would eventually heat up as discussed above. For this
PDF
Album
Full Research Paper
Published 19 Oct 2017

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

  • Luc Aymard,
  • Yassine Oumellal and
  • Jean-Pierre Bonnet

Beilstein J. Nanotechnol. 2015, 6, 1821–1839, doi:10.3762/bjnano.6.186

Graphical Abstract
  • d(002) drastically increases (step B). Firstly, The mechanical energy transferred to the carbon produces an exfoliation of the graphene layer. Then, the cumulated mechanical energy coming from the grinding is sufficient to promote fissure propagation within the graphene layer, resulting in the
PDF
Album
Review
Published 31 Aug 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • transfers a high amount of mechanical energy to the boron powder, which results in an increased surface area and increased number of contact points among the catalyst, boron and nitrogen precursors, resulting in improved yield and product quality [31]. The structural changes in the boron compounds in the
PDF
Album
Review
Published 08 Jan 2015

Model systems for studying cell adhesion and biomimetic actin networks

  • Dorothea Brüggemann,
  • Johannes P. Frohnmayer and
  • Joachim P. Spatz

Beilstein J. Nanotechnol. 2014, 5, 1193–1202, doi:10.3762/bjnano.5.131

Graphical Abstract
  • proteins like integrin is important for cell shape and migration. The actin-based motility of cells is driven by myosin, a molecular motor, which converts chemical energy in the form of ATP to mechanical energy, thus generating force and movement [20]. When integrins have created a cell–ECM contact they
PDF
Album
Review
Published 01 Aug 2014
Other Beilstein-Institut Open Science Activities