Search results

Search for "regenerative medicine" in Full Text gives 30 result(s) in Beilstein Journal of Nanotechnology.

Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model

  • Jennifer Y. Kasper,
  • Lisa Feiden,
  • Maria I. Hermanns,
  • Christoph Bantz,
  • Michael Maskos,
  • Ronald E. Unger and
  • C. James Kirkpatrick

Beilstein J. Nanotechnol. 2015, 6, 517–528, doi:10.3762/bjnano.6.54

Graphical Abstract
  • Abstract The air–blood barrier is a very thin membrane of about 2.2 µm thickness and therefore represents an ideal portal of entry for nanoparticles to be used therapeutically in a regenerative medicine strategy. Until now, numerous studies using cellular airway models have been conducted in vitro in order
  • cytotoxicity of aSNP-surfactant interaction on cell cultures kept on the air–liquid interface (ALI). On ALI the epithelial cells develop a physiological surfactant monolayer as it occurs in vivo. Prospectively, the results are relevant for the field of regenerative medicine, in which nanoparticles could be
PDF
Album
Full Research Paper
Published 20 Feb 2015

Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation

  • Ivonne Brüstle,
  • Thomas Simmet,
  • Gerd Ulrich Nienhaus,
  • Katharina Landfester and
  • Volker Mailänder

Beilstein J. Nanotechnol. 2015, 6, 383–395, doi:10.3762/bjnano.6.38

Graphical Abstract
  • great interest for tissue engineering approaches (e.g., for defects of bone or cartilage). Over 100 clinical trials employing hMSCs for regenerative medicine, for instance, after stroke and myocardial infarction [17], demonstrate that the clinical use of these cells is of utmost interest. Therefore, the
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • treatment conditions are the most appropriate for enhancing the surface functionality without affecting the morphological properties and chemical structure of the polymer. Mechanical behavior of the plasma-treated scaffolds A basic principle in regenerative medicine is to maintain the structural integrity
PDF
Album
Full Research Paper
Published 22 Jan 2015

Formation of stable Si–O–C submonolayers on hydrogen-terminated silicon(111) under low-temperature conditions

  • Yit Lung Khung,
  • Siti Hawa Ngalim,
  • Andrea Scaccabarozzi and
  • Dario Narducci

Beilstein J. Nanotechnol. 2015, 6, 19–26, doi:10.3762/bjnano.6.3

Graphical Abstract
  • Yit Lung Khung Siti Hawa Ngalim Andrea Scaccabarozzi Dario Narducci University of Milan-Bicocca, Department of Materials Science, Via R. Cozzi 53, I-20125 Milan, Italy Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Penang, Malaysia 10.3762
PDF
Album
Letter
Published 05 Jan 2015

Imaging the intracellular degradation of biodegradable polymer nanoparticles

  • Anne-Kathrin Barthel,
  • Martin Dass,
  • Melanie Dröge,
  • Jens-Michael Cramer,
  • Daniela Baumann,
  • Markus Urban,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2014, 5, 1905–1917, doi:10.3762/bjnano.5.201

Graphical Abstract
  • cells (MSCs) were chosen because they are promising candidates for regenerative medicine [18][19] and they show a moderate cleavage rate without addition of transfection agents or mitotic inhibitors [20][21]. Common strategies to monitor and quantify the nanoparticle load on a single cell level are
PDF
Album
Full Research Paper
Published 29 Oct 2014
Other Beilstein-Institut Open Science Activities