Search results

Search for "solid electrolyte" in Full Text gives 32 result(s) in Beilstein Journal of Nanotechnology.

Multiscale modeling of lithium ion batteries: thermal aspects

  • Arnulf Latz and
  • Jochen Zausch

Beilstein J. Nanotechnol. 2015, 6, 987–1007, doi:10.3762/bjnano.6.102

Graphical Abstract
  • under high voltages and chemical compatible with the chosen electrode materials. Thus, additives are used in order to enhance the ionic conductivity and to improve the chemical compatibility. Also the properties of the solid electrolyte interphase (SEI) on the negative electrodes, which is essential for
PDF
Album
Full Research Paper
Published 20 Apr 2015

Stick–slip behaviour on Au(111) with adsorption of copper and sulfate

  • Nikolay Podgaynyy,
  • Sabine Wezisla,
  • Christoph Molls,
  • Shahid Iqbal and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2015, 6, 820–830, doi:10.3762/bjnano.6.85

Graphical Abstract
  • obtained at the solid/gas interface are also valid at the solid electrolyte interface. In this paper we present the results of investigations of friction forces during UPD and dissolution of Cu/Au(111) and also during sulfate adsorption in sulfuric acid solution. We extend previous measurements to lower
PDF
Album
Full Research Paper
Published 26 Mar 2015

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
  • metal as the layer formed, referred to as SEI or solid electrolyte interface, allows for lithium ion diffusion and was proven critical in preventing further decomposition of the electrolyte in the highly reducing environment during lithium plating [5][6]. The challenge resulting from the electrolyte
PDF
Album
Review
Published 18 Aug 2014

The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

  • Jakob G. Howalt and
  • Tejs Vegge

Beilstein J. Nanotechnol. 2014, 5, 111–120, doi:10.3762/bjnano.5.11

Graphical Abstract
  • electrochemical ammonia production with seemingly low Faradaic losses to hydrogen evolution [1][2]. To produce ammonia electrochemically, one can either use a liquid or a solid electrolyte, but these effectively require wet conditions to obtain sufficient protonic conduction [3][4]. The presence of water may give
  • production [5][6]. In this paper, the presence of oxygen species, e.g., resulting from a dehydrogenation reaction of residual water from a solid electrolyte or an aqueous electrolyte, will be investigated to understand the implications it has on the catalytic properties for electrochemical ammonia production
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2014

Synthesis and electrochemical performance of Li2Co1−xMxPO4F (M = Fe, Mn) cathode materials

  • Nellie R. Khasanova,
  • Oleg A. Drozhzhin,
  • Stanislav S. Fedotov,
  • Darya A. Storozhilova,
  • Rodion V. Panin and
  • Evgeny V. Antipov

Beilstein J. Nanotechnol. 2013, 4, 860–867, doi:10.3762/bjnano.4.97

Graphical Abstract
  • electrolyte. The decrease of the irreversible capacity, which leads to the high columbic efficiency, implies that this electrolyte forms a stable solid-electrolyte interface on the electrode surface, but this suggestion should be further investigated and confirmed. A preliminary investigation of the
PDF
Album
Full Research Paper
Published 09 Dec 2013

A facile synthesis of a carbon-encapsulated Fe3O4 nanocomposite and its performance as anode in lithium-ion batteries

  • Raju Prakash,
  • Katharina Fanselau,
  • Shuhua Ren,
  • Tapan Kumar Mandal,
  • Christian Kübel,
  • Horst Hahn and
  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2013, 4, 699–704, doi:10.3762/bjnano.4.79

Graphical Abstract
  • → LixFe3O4} [24]. The long plateau corresponds to the conversion reaction and the sloping part of the discharge curve can be assigned to the formation of the solid electrolyte interface (SEI) layer, as well as to the formation of a gel-like film through the reaction of Fe0 and electrolyte [7][8][9][10][11
PDF
Album
Supp Info
Letter
Published 30 Oct 2013

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • –. The hydrated polymer membrane behaves as a solid electrolyte: it swells in the presence of water and passes through into cathode compartment only positively charged protons. On the cathode catalyst, they react exothermically with oxygen molecules and electrons (which have traveled through the external
PDF
Album
Full Research Paper
Published 26 Sep 2013
Other Beilstein-Institut Open Science Activities