Search results

Search for "CMOS" in Full Text gives 55 result(s) in Beilstein Journal of Nanotechnology.

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • formation and the formation of the sub-oxide interface states [23]. As ion implantation is unavoidable for CMOS technology today, it is desirable to use it not only for the fabrication of NCs but for the doping of NCs as well. Over the past decade, phosphorus-and erbium-doped Si NCs have attracted a great
PDF
Album
Review
Published 16 Oct 2014

Sublattice asymmetry of impurity doping in graphene: A review

  • James A. Lawlor and
  • Mauro S. Ferreira

Beilstein J. Nanotechnol. 2014, 5, 1210–1217, doi:10.3762/bjnano.5.133

Graphical Abstract
  • of over 8%, where impurities are all on the same sublattice, will produce a band gap of around 550 meV far surpassing the minimum required for a CMOS [14][36] and finding that the band gap scales with concentration to the power 3/4, as shown in Figure 3. Even with a 4:1 doping ratio between
PDF
Album
Review
Published 05 Aug 2014

A highly pH-sensitive nanowire field-effect transistor based on silicon on insulator

  • Denis E. Presnov,
  • Sergey V. Amitonov,
  • Pavel A. Krutitskii,
  • Valentina V. Kolybasova,
  • Igor A. Devyatov,
  • Vladimir A. Krupenin and
  • Igor I. Soloviev

Beilstein J. Nanotechnol. 2013, 4, 330–335, doi:10.3762/bjnano.4.38

Graphical Abstract
  • , Moscow 119991, Russia Keldysh Institute of Applied Mathematics, Moscow 125047, Russia 10.3762/bjnano.4.38 Abstract Background: An experimental and theoretical study of a silicon-nanowire field-effect transistor made of silicon on insulator by CMOS-compatible methods is presented. Results: A maximum
  • Nernstian sensitivity to pH change of 59 mV/pH was obtained experimentally. The maximum charge sensitivity of the sensor was estimated to be on the order of a thousandth of the electron charge in subthreshold mode. Conclusion: The sensitivity obtained for our sensor built in the CMOS-compatible top-down
  • approach does not yield to the one of sensors built in bottom-up approaches. This provides a good background for the development of CMOS-compatible probes with primary signal processing on-chip. Keywords: charge/field sensor; field-effect transistor; nanowire; pH sensor; silicon-on-insulator
PDF
Album
Full Research Paper
Published 28 May 2013

High-resolution electrical and chemical characterization of nm-scale organic and inorganic devices

  • Pierre Eyben

Beilstein J. Nanotechnol. 2013, 4, 318–319, doi:10.3762/bjnano.4.35

Graphical Abstract
  • increase in “More than Moore” developments targeting energy (photovoltaic, energy storage), imaging (e.g., quantitative medical imaging), sensor/actuators linked to CMOS-base circuitry, biochips, etc. The utilization of graphene in order to process high mobility (both for holes and electrons) field-effect
PDF
Editorial
Published 16 May 2013

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • generation and AD604 for NMR signal amplification; Analog Devices) and off-the-shelf RF components (e.g., ZAD-1 mixer, ZMSC-2 power splitter, and ZYSWA-2 RF switch; Mini-Circuits) [14]. In newer versions, these functionalities have been integrated onto a single CMOS IC chip [17][19]. This chip was designed
  • the smaller magnet, this device incorporates a new RF transceiver fully integrated in the 0.18 μm CMOS. (Reproduced with permission from [14]. Copyright 2008 Nature Publishing Group. Reproduced with permission from [15]. Copyright 2009 National Academy of Sciences, USA. Reproduced with permission from
PDF
Album
Review
Published 16 Dec 2010
Other Beilstein-Institut Open Science Activities