Search results

Search for "electrochemical deposition" in Full Text gives 52 result(s) in Beilstein Journal of Nanotechnology.

Lifetime analysis of individual-atom contacts and crossover to geometric-shell structures in unstrained silver nanowires

  • Christian Obermair,
  • Holger Kuhn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2011, 2, 740–745, doi:10.3762/bjnano.2.81

Graphical Abstract
  • was formed by electrochemical deposition of silver into a nanoscale gap between two gold electrodes. Applying a control potential relative to a third, independent gate electrode allows opening and closing of an atomic-scale gap by the controlled and reversible relocation of individual atoms. In this
  • point contacts obtained by electrochemical deposition allowed the direct observation of the fingerprints of atom-by-atom and subsequent layer-by-layer growth of the metallic point contacts. We gave a complete quantitative description of the different stages of nanowire growth: First, individual-atomic
PDF
Album
Full Research Paper
Published 03 Nov 2011

The atomic force microscope as a mechano–electrochemical pen

  • Christian Obermair,
  • Andreas Wagner and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2011, 2, 659–664, doi:10.3762/bjnano.2.70

Graphical Abstract
  • microscopy; deposition; electrochemistry; nanoelectronics; nanofabrication; nanolithography; nanotechnology; NEMS and MEMS; scanning probe lithography; Introduction The controlled, patterned, electrochemical deposition of metals at predefined positions on the nanometer scale is of great interest for
  • electrochemical deposition of metals for the fabrication of atomic-scale contacts and switches. By electrochemical deposition of nanoscale silver contacts and subsequent electrochemical cycling, an electrically controllable single-atom relay was demonstrated, which allows the controlled switching of an electrical
  • experiments demonstrated that the tip of an electrochemical STM can also be used for local electrochemical deposition. Material electrochemically deposited on an STM tip was subsequently transferred to the surface [22][23], allowing controlled metallic nanopatterning of surfaces. Improvements of STM-based
PDF
Album
Full Research Paper
Published 04 Oct 2011
Other Beilstein-Institut Open Science Activities