Search results

Search for "mechanism" in Full Text gives 1242 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Chitosan nanocomposite containing rotenoids: an alternative bioinsecticidal approach for the management of Aedes aegypti

  • Maria A. A. Bertonceli,
  • Vitor D. C. Cristo,
  • Ivo J. Vieira,
  • Francisco J. A. Lemos,
  • Arnoldo R. Façanha,
  • Raimundo Braz-Filho,
  • Gustavo V. T. Batista,
  • Luis G. M. Basso,
  • Sérgio H. Seabra,
  • Thalya S. R. Nogueira,
  • Felipe F. Moreira,
  • Arícia L. E. M. Assis,
  • Antônia E. A. Oliveira and
  • Kátia V. S. Fernandes

Beilstein J. Nanotechnol. 2025, 16, 1197–1208, doi:10.3762/bjnano.16.88

Graphical Abstract
  • barrier disruption, or the presence of damage-associated molecular patterns (DAMPs) [34][35]. Melanization serves as a fundamental defense mechanism in arthropods, contributing to the encapsulation of damaged tissues and neutralization of harmful agents, including ROS and foreign particles [36]. It is
PDF
Album
Full Research Paper
Published 28 Jul 2025

Electronic and optical properties of chloropicrin adsorbed ZnS nanotubes: first principle analysis

  • Prakash Yadav,
  • Boddepalli SanthiBhushan and
  • Anurag Srivastava

Beilstein J. Nanotechnol. 2025, 16, 1184–1196, doi:10.3762/bjnano.16.87

Graphical Abstract
  • functional theory (DFT) to explore the sensing capabilities of a ZnS (3,3) nanotube (ZnS NT) for detecting chloropicrin (CP, CCl3NO2), a highly toxic gas. To elucidate the sensing mechanism, we systematically analyze the adsorption configurations, Mulliken charge transfer, band structure, density of states
PDF
Album
Full Research Paper
Published 25 Jul 2025

Crystalline and amorphous structure selectivity of ignoble high-entropy alloy nanoparticles during laser ablation in organic liquids is set by pulse duration

  • Robert Stuckert,
  • Felix Pohl,
  • Oleg Prymak,
  • Ulrich Schürmann,
  • Christoph Rehbock,
  • Lorenz Kienle and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 1141–1159, doi:10.3762/bjnano.16.84

Graphical Abstract
  • catalysis or magnetic devices. This is due to their exceptional compositional tunability arising from the synergistic interplay of multiple elements within a single particle. While laser-synthesized, surfactant-free colloidal HEA NPs have already been reported, the underlying formation mechanism remains
  • graphitic carbon coatings. The discovery of the structure-directing mechanism allows one to select between crystalline or amorphous HEA NP products, simply by choice of the laser pulse duration in the same, well-scalable setup, giving access to colloidal particles that can be further downstream processed to
  • while the temperature is only around twice as high. Consequently, we can expect that the MSD is even lower for ps-LAL, possibly falling in a sub-nanometer range, which makes diffusion into liquid metal droplets more unlikely. This hypothesized mechanism that takes carbon diffusion into the particle core
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2025

Deep learning for enhancement of low-resolution and noisy scanning probe microscopy images

  • Samuel Gelman,
  • Irit Rosenhek-Goldian,
  • Nir Kampf,
  • Marek Patočka,
  • Maricarmen Rios,
  • Marcos Penedo,
  • Georg Fantner,
  • Amir Beker,
  • Sidney R. Cohen and
  • Ido Azuri

Beilstein J. Nanotechnol. 2025, 16, 1129–1140, doi:10.3762/bjnano.16.83

Graphical Abstract
  • apart from prior dense block techniques, which fail to use additional local dense connections across blocks [30]. Another modification is the cascading residual network (CARN), which uses a cascading mechanism at local and global levels to combine features from both levels [29]. Additionally, SR deep
PDF
Album
Full Research Paper
Published 16 Jul 2025

Single-layer graphene oxide film grown on α-Al2O3(0001) for use as an adsorbent

  • Shiro Entani,
  • Mitsunori Honda,
  • Masaru Takizawa and
  • Makoto Kohda

Beilstein J. Nanotechnol. 2025, 16, 1082–1087, doi:10.3762/bjnano.16.79

Graphical Abstract
  • . have demonstrated that GO is effective in the removal of actinides from nuclear wastewaters [8]. However, the adsorbing mechanism of metal ions to the GO surface, such as adsorption sites, remains to be elucidated. It has been demonstrated that GO tends to aggregate during the process of metal ion
  • adsorbing mechanism of the Cs atoms to the SLGO sheet, we investigated the electronic structure and chemical properties of adsorbed Cs by changing the pH level of the Cs aqueous solutions. Figure 5 shows Cs 3d XPS spectra of Cs-adsorbed SLGO under three different pH values. No energy shift was observed
  • have dissociation constants pK = 4.3, 6.6, and 9.8 [31]. It can be considered that Cs adsorbs on the oxygen functional groups through a mechanism of ion exchange. This process involves the substitution of H atoms from oxygen functional groups, such as carboxyl and hydroxy groups, with Cs atoms. It can
PDF
Album
Full Research Paper
Published 10 Jul 2025

Piezoelectricity of hexagonal boron nitrides improves bone tissue generation as tested on osteoblasts

  • Sevin Adiguzel,
  • Nilay Cicek,
  • Zehra Cobandede,
  • Feray B. Misirlioglu,
  • Hulya Yilmaz and
  • Mustafa Culha

Beilstein J. Nanotechnol. 2025, 16, 1068–1081, doi:10.3762/bjnano.16.78

Graphical Abstract
  • mechanism in which ROS plays a critical role in the mineralization process in osteoblasts [63]. In addition, the slow degradation of hBNs, resulting in the release of boric acid, a boron compound that supports the osteogenic response, may further contribute to the increase in calcium deposition by inducing
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2025

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
PDF
Album
Review
Published 04 Jul 2025

A calix[4]arene-based supramolecular nanoassembly targeting cancer cells and triggering the release of nitric oxide with green light

  • Cristina Parisi,
  • Loredana Ferreri,
  • Tassia J. Martins,
  • Francesca Laneri,
  • Samantha Sollima,
  • Antonina Azzolina,
  • Antonella Cusimano,
  • Nicola D’Antona,
  • Grazia M. L. Consoli and
  • Salvatore Sortino

Beilstein J. Nanotechnol. 2025, 16, 1003–1013, doi:10.3762/bjnano.16.75

Graphical Abstract
  • involving this chromophore and the encapsulated 2. As far as the mechanism of this process is concerned, both singlet–singlet and triplet–triplet energy transfers are ruled out based on the following. Based on the absorption spectra of the ABF and 2, the lowest singlet state of ABF can be estimated to be
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2025

Shape, membrane morphology, and morphodynamic response of metabolically active human mitochondria revealed by scanning ion conductance microscopy

  • Eric Lieberwirth,
  • Anja Schaeper,
  • Regina Lange,
  • Ingo Barke,
  • Simone Baltrusch and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2025, 16, 951–967, doi:10.3762/bjnano.16.73

Graphical Abstract
  • , with response times of the order of seconds or less [6][41][50]. The binding process between microtubules and mitochondria is well known [40][41]. The precise mechanism by which mitochondria and microtubules locate each other remains unclear, but their interaction is too directional to be coincidental
PDF
Album
Supp Info
Full Research Paper
Published 30 Jun 2025

Synthesis of biowaste-derived carbon-dot-mediated silver nanoparticles and the evaluation of electrochemical properties for supercapacitor electrodes

  • Navya Kumari Tenkayala,
  • Chandan Kumar Maity,
  • Md Moniruzzaman and
  • Subramani Devaraju

Beilstein J. Nanotechnol. 2025, 16, 933–943, doi:10.3762/bjnano.16.71

Graphical Abstract
  • supercapacitors involves two different kinds of charge-storing mechanisms: pseudocapacitance and electric double-layer capacitance (EDLC) [5]. The reversible redox processes are the primary charge-storage mechanism for pseudocapacitors [6]. Even though the capacitance value of pseudocapacitors is theoretically
  • surface of the CDs were oxidized and converted to C=O groups [34]. The mechanism for the production of PG-CDs-AgNPs has been illustrated in Figure 3. The surface area of the supercapacitor electrode material is an important feature that can aid in surface charge storage. The specific surface area of the
  • mechanism for PG-CDs-AgNPs, as evidenced by the quasi-rectangular CV profile [38]. The electrochemistry of any electrode material is purposefully controlled by the composition of the electrolyte. Since KCl is used as a neutral electrolyte, PG-CDs-AgNPs exhibit capacitive behavior through a surface-charge
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2025

Structural and magnetic properties of microwave-synthesized reduced graphene oxide/VO2/Fe2O3 nanocomposite

  • Sumanta Sahoo,
  • Ankur Sood and
  • Sung Soo Han

Beilstein J. Nanotechnol. 2025, 16, 921–932, doi:10.3762/bjnano.16.70

Graphical Abstract
  • is highly beneficial. On the other hand, the formation and dispersion of Fe2O3 NPs on the rGO surface through the decomposition of ferrocene followed a similar mechanism, as discussed in a previous report [29]. Upon MW irradiation, the Fe molecules were oxidized to form Fe2O3 and deposited on rGO
PDF
Album
Full Research Paper
Published 20 Jun 2025

Focused ion beam-induced platinum deposition with a low-temperature cesium ion source

  • Thomas Henning Loeber,
  • Bert Laegel,
  • Meltem Sezen,
  • Feray Bakan Misirlioglu,
  • Edgar J. D. Vredenbregt and
  • Yang Li

Beilstein J. Nanotechnol. 2025, 16, 910–920, doi:10.3762/bjnano.16.69

Graphical Abstract
  • major role is played by the primary ion beam, together with a thermal heat spike, excited surface atoms (ESA), or secondary electrons (SE). According to Hlawacek et al. [8], the number of ESA is proportional to the nuclear stopping power, so for heavier ions this mechanism dominates the deposition. The
  • exact order, however, of which mechanism contributes how much to the deposition, for example, for cesium (Cs) ions, is beyond the scope of this paper since FIBID is rather complex and depends on a variety of parameters. Besides beam parameters such as acceleration voltage, beam current, ion dose, dwell
  • + FIBID-Pt. The proposed mechanism for the formation of these bubbles is that elements of the Pt precursor trap the primary alkali metal ions when the chemical bonds of the precursor are not completely broken. With higher ion beam voltage, more bonds are broken and volatile elements including Cs+ ions are
PDF
Album
Full Research Paper
Published 16 Jun 2025

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • explains the mechanism of the evolution of nanostructures on ion beam-implanted surfaces at normal incidence. According to this theory, in the early stages, sputtering leads to the formation of tiny wavy perturbations induced via instabilities created by the ion beam. These instabilities are followed by a
PDF
Album
Full Research Paper
Published 11 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • edge are compatible with a transient reduction of Ce ions in the film, as shown by the left panel of Figure 7, and they demonstrate that the resonantly excited plasmonic Ag NPs transfer electrons to the Ce atoms of the CeO2 film through a highly efficient electron-based mechanism [63]. The importance
PDF
Album
Review
Published 10 Jun 2025

Facile one-step radio frequency magnetron sputtering of Ni/NiO on stainless steel for an efficient electrode for hydrogen evolution reaction

  • Ha Huu Do,
  • Khac Binh Nguyen,
  • Phuong N. Nguyen and
  • Hoai Phuong Pham

Beilstein J. Nanotechnol. 2025, 16, 837–846, doi:10.3762/bjnano.16.63

Graphical Abstract
  • ) [41], NiP2/NiO (94 mV·dec−1) [45], Ni5P4 (98 mV·dec−1) [46], and NiCoP/rGO (124.1 mV·dec−1) [47]. Generally, Tafel slopes are used to determine the HER mechanism, which could follow the Volmer–Heyrovsky or Volmer–Tafel pathway [49]. In this work, the Tafel value of Ni/NiO/SS-10 is between 40 and 120
  • mV·dec−1, revealing that the HER mechanism follows the Volmer–Heyrovsky mechanism. During the electrocatalytic process, the NiO components are crucial in facilitating the dissociative adsorption of water molecules to generate adsorbed H atoms (Hads). Also, NiO units are vital in scavenging OH− ions
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2025

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • Zn(OH)2 constituent). ZH nanoparticles and GO nanosheets in the GO-SG-ZH hydrogel are antibacterial and antibiofilm agents with low toxicity for food packaging and biomedical applications [56][57]. The main antibacterial mechanism of GO nanosheets is cell membrane damage caused by direct contact of
  • nanoparticles. Regarding the antibacterial mechanism of the nanocomposite coating, direct contact of bacterial cells with sharp nanostructures of the coating is the cause of membrane damage and cell inactivation. Zn2+ cations released from ZH nanoparticles and reactive oxygen species generated by ZH
  • % higher than that of blank PLA film. Nanosilica and graphene-based nanosheets were nanostructures with high elastic modulus for reinforcement of PLA films through load transfer mechanism. High elasticity of SG and GO-SG-ZH coatings led to the increases in elastic moduli of the coated films. Besides
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Morphology and properties of pyrite nanoparticles obtained by pulsed laser ablation in liquid and thin films for photodetection

  • Akshana Parameswaran Sreekala,
  • Bindu Krishnan,
  • Rene Fabian Cienfuegos Pelaes,
  • David Avellaneda Avellaneda,
  • Josué Amílcar Aguilar-Martínez and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 785–805, doi:10.3762/bjnano.16.60

Graphical Abstract
  • formation of hollow structures. This process is influenced by laser ablation conditions and physical properties of the surrounding liquid, similar to the mechanism described in the referenced article. Though the average NP size calculated from STEM images for FIPA NPs was 19.91 nm with a standard deviation
  • standard deviation values in each case are given in the respective figures (Figures 4–6d). From the above analysis, it is evident that different morphologies of FeS2 nanoparticles are generated by PLAL as the liquid medium changes. The ablation and nanoparticle formation mechanism begins with the FeS2
  • the release of a second shockwave, which causes the cavitation bubble to expand in the liquid before collapsing on a time period of hundreds of microseconds releasing NPs in the liquid resulting in stable colloidal solution [15][39]. Despite the proposed laser ablation mechanism, there are
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2025

Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline

  • Sabina Lewińska,
  • Pavlo Aleshkevych,
  • Roman Minikayev,
  • Anna Bajorek,
  • Mateusz Dulski,
  • Krystian Prusik,
  • Tomasz Wojciechowski and
  • Anna Ślawska-Waniewska

Beilstein J. Nanotechnol. 2025, 16, 762–784, doi:10.3762/bjnano.16.59

Graphical Abstract
  • ]. Possibly, the alginate–cellulose structures are visible in the TEM images from the FST sample. On the other hand, another explanation could be an ion exchange mechanism (Ca→Fe) and chemical interactions between the carboxylate groups of alginate and iron Fe3+ ions, which tend to bind alginate more strongly
PDF
Album
Full Research Paper
Published 02 Jun 2025

Synthesis of a multicomponent cellulose-based adsorbent for tetracycline removal from aquaculture water

  • Uyen Bao Tran,
  • Ngoc Thanh Vo-Tran,
  • Khai The Truong,
  • Dat Anh Nguyen,
  • Quang Nhat Tran,
  • Huu-Quang Nguyen,
  • Jaebeom Lee and
  • Hai Son Truong-Lam

Beilstein J. Nanotechnol. 2025, 16, 728–739, doi:10.3762/bjnano.16.56

Graphical Abstract
  • were characterized, and the TC adsorption efficiency of PGC was assessed using high-performance liquid chromatography–mass spectroscopy (HPLC-MS). Elemental analysis of PGC identified four key mechanisms governing its endothermic TC adsorption mechanism: surface complexation, electrostatic interactions
  • characteristics and morphology of the synthesized adsorbent. Additionally, the study examines the adsorption mechanism of TC on the material’s surface and evaluates the effects of pH value, adsorbent dosage, and matrix composition. As a biodegradable and easily recoverable material derived from natural cellulose
  • dissolution via hydrate bridge formation. Additionally, the presence of Zn enhances the TC adsorption capacity of PGC through a chemical adsorption mechanism. According to our findings, Zn content increased significantly from 12.45% in pristine CMC to 22.24% in PGC, aligning with FTIR outcomes confirming the
PDF
Album
Full Research Paper
Published 27 May 2025

Efficiency of single-pulse laser fragmentation of organic nutraceutical dispersions in a circular jet flow-through reactor

  • Tina Friedenauer,
  • Maximilian Spellauge,
  • Alexander Sommereyns,
  • Verena Labenski,
  • Tuba Esatbeyoglu,
  • Christoph Rehbock,
  • Heinz P. Huber and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 711–727, doi:10.3762/bjnano.16.55

Graphical Abstract
  • systematic studies of the fragmentation mechanism and reliable measures of fluence-dependent degradation and particle size. To compensate for this disadvantage, Lau et al. introduced a circular jet (CJ) flow-through reactor [15], which generates a hydrostatically driven free liquid jet that is
  • the melting temperature range, which is why the melting temperature roughly corresponds to the degradation temperature [53][54][55][56]. Another potential mechanism would be photochemical degradation. It has been reported that upon irradiation the curcumin molecule dissociates primarily at its central
  • by-products from the direct mechanism. The contributions from the direct damage pathway are verified by the fact that degradation and particle fragmentation efficiency are proportional (Figure 3, Figure 5A). However, the pronounced concentration dependency with a ten times higher absolute molecular
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • charged relative to each other. It is evident that this is the mechanism by which the individual fragments are linked into a single crystal. The SPEM technique is fundamental for the detection of such inhomogeneities, given that the photoelectron yield depth in this instance does not exceed 12 angstroms
PDF
Album
Review
Published 23 May 2025

The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination

  • Konstantinos Bidinakis and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 678–689, doi:10.3762/bjnano.16.52

Graphical Abstract
  • ]. For PTAA, under illumination, a similar mechanism is proposed, whereby the oxidation of PTAA raises the conductivity of the polymer [33]. For both HTLs, the inclusion of tBP promotes a better distribution of the HTL on the perovskite, preventing organic semiconductor/LiTFSI phase segregation [34
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • drug, and KH is the Higuchi model rate constant. KK is the Korsmeyer–Peppas model or drug–polymer kinetic constant, Mt/Ma is the fraction of drug release at time t, and n is the exponent of drug release mechanism. Statistical analysis Interpretation of in vitro data was performed using ANOVA. Dunnett’s
PDF
Album
Full Research Paper
Published 15 May 2025

A formulation containing Cymbopogon flexuosus essential oil: improvement of biochemical parameters and oxidative stress in diabetic rats

  • Ailton Santos Sena-Júnior,
  • Cleverton Nascimento Santana Andrade,
  • Pedro Henrique Macedo Moura,
  • Jocsã Hémany Cândido dos Santos,
  • Cauãn Torres Trancoso,
  • Eloia Emanuelly Dias Silva,
  • Deise Maria Rego Rodrigues Silva,
  • Ênio Pereira Telles,
  • Luiz André Santos Silva,
  • Isabella Lima Dantas Teles,
  • Sara Fernanda Mota de Almeida,
  • Daniel Alves de Souza,
  • Jileno Ferreira Santos,
  • Felipe José Aidar Martins,
  • Ana Mara de Oliveira e Silva,
  • Sandra Lauton-Santos,
  • Guilherme Rodolfo Souza de Araujo,
  • Cristiane Bani Correa,
  • Rogéria De Souza Nunes,
  • Lysandro Pinto Borges and
  • Ana Amélia Moreira Lira

Beilstein J. Nanotechnol. 2025, 16, 617–636, doi:10.3762/bjnano.16.48

Graphical Abstract
  • . The use of STZ in animals causes conditions similar to that of some humans with type-1 diabetes without glycemic control. STZ has been shown to significantly increase blood glucose levels in Wistar rats. STZ’s mechanism of action alters the DNA base sequences of pancreatic islet β-cells and stimulates
  • . Simultaneously, the enhanced antioxidant activity of the microemulsion, especially regarding ABTS and FRAP, suggests a direct protective role against oxidative damage. While our data suggest a dual mechanism, future studies using molecular markers of oxidative stress in renal tissue would further clarify the
PDF
Album
Supp Info
Full Research Paper
Published 07 May 2025
Other Beilstein-Institut Open Science Activities