Search results

Search for "post-processing" in Full Text gives 54 result(s) in Beilstein Journal of Nanotechnology.

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • the laser parameters during synthesis alone are not suitable for the size control during ablation of bulk solids in liquid. The next possible strategy for size control may be ligand-free post-processing of the laser-fabricated nanoparticles. To this end a rather simple but nonetheless feasible
PDF
Album
Video
Review
Published 12 Sep 2014

Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

  • Alexander Harder,
  • Mareike Dieding,
  • Volker Walhorn,
  • Sven Degenhard,
  • Andreas Brodehl,
  • Christina Wege,
  • Hendrik Milting and
  • Dario Anselmetti

Beilstein J. Nanotechnol. 2013, 4, 510–516, doi:10.3762/bjnano.4.60

Graphical Abstract
  • is moved through the focal detection volume which has a characteristic radius of approx. 300 nm, the fluorescence emission is only enhanced at dye–tip distances lower than approx. 10 nm. Consequently, the raw near-field data exposes stray far-field fluorescence. During post-processing the far-field
PDF
Album
Full Research Paper
Published 11 Sep 2013

Near-field effects and energy transfer in hybrid metal-oxide nanostructures

  • Ulrich Herr,
  • Barat Achinuq,
  • Cahit Benel,
  • Giorgos Papageorgiou,
  • Manuel Goncalves,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Paul Ziemann,
  • Peter Marek and
  • Horst Hahn

Beilstein J. Nanotechnol. 2013, 4, 306–317, doi:10.3762/bjnano.4.34

Graphical Abstract
  • structure of the TiO2:Eu core due to the perfect lattice matching possible in the homoepitaxial case. In order to investigate the possibility for generation of such coatings, TiO2:Eu nanoparticles were subjected to a post-processing step in an atomic layer deposition (ALD) chamber supplied with trimethyl
  • using organic surfactants. Results of the ALD post-processing of TiO2:Eu nanoparticles are shown in Figure 7 and Figure 8. Figure 7 shows a STEM image of TiO2:Eu nanoparticles coated with 3 nm of Al2O3. In addition, a thin layer of TiO2 was added at the end of the process in order to test the
  • post-processing. However, it has also become obvious that already existing agglomerates will be coated as a whole, therefore not leading to a separate protection of the surface of individual particle. This may be avoided by coating of the particles while they are still being carried in the gas flow of
PDF
Album
Full Research Paper
Published 14 May 2013

Towards 4-dimensional atomic force spectroscopy using the spectral inversion method

  • Jeffrey C. Williams and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2013, 4, 87–93, doi:10.3762/bjnano.4.10

Graphical Abstract
  • and in order to filter out the effect of flexural–torsional cross-talk [8][11][12]. Upon completion of the scan and post-processing of the data [11], the user will have acquired for every (x,y) pixel on the surface (see Figure 1, expanded representation), which is equivalent to the 4D representation
  • , even without explicitly acquiring velocity information, provided that the force curve inversion is accurate (a detailed analysis of parameter recovery from force curves for the SLS model can be found in [17]). Experimental feasibility The additional post-processing demands required to extend the
  • spectral inversion method from three to four dimensions are relatively minor, since the tip position data is already recorded. Furthermore, all Fourier analysis is carried out during a post-processing step and the calculation of the velocity does not represent an excessive computational burden. Thus, the
PDF
Album
Full Research Paper
Published 07 Feb 2013
Other Beilstein-Institut Open Science Activities