Search results

Search for "surface plasmons" in Full Text gives 53 result(s) in Beilstein Journal of Nanotechnology.

Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process

  • Tanujjal Bora,
  • Htet H. Kyaw,
  • Soumik Sarkar,
  • Samir K. Pal and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2011, 2, 681–690, doi:10.3762/bjnano.2.73

Graphical Abstract
  • nanorods. The optical absorptions of the ZnO-nanorod and ZnO/Au-nanocomposite photoelectrode are shown in Figure 2a. Due to the absorption by surface plasmons in the Au nanoparticles, a higher optical absorption of the ZnO/Au-nanocomposite photoelectrode near 520 nm was observed. The optical absorption by
  • higher Jsc (82.46 μA/cm2) as well as Voc (0.39 V) compared to the bare ZnO-nanorod solar cell, which is mainly attributed to the higher optical absorption of the ZnO/Au photoelectrode due to the absorption by surface plasmons in Au nanoparticles. In the case of the ZnO/Au solar cells without any
  • -nanocomposite DSSCs measured at different incident wavelengths are shown. Due to the absorption by surface plasmons in the Au nanoparticles, an improved photocurrent response was observed above 500 nm illumination in the case of the ZnO/Au-nanocomposite DSSC compared to the bare ZnO-nanorod DSSC. The ZnO/Au
PDF
Album
Full Research Paper
Published 13 Oct 2011

Towards multiple readout application of plasmonic arrays

  • Dana Cialla,
  • Karina Weber,
  • René Böhme,
  • Uwe Hübner,
  • Henrik Schneidewind,
  • Matthias Zeisberger,
  • Roland Mattheis,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2011, 2, 501–508, doi:10.3762/bjnano.2.54

Graphical Abstract
  • periodically patterned gold surface. (B) Due to the interaction of the incident light with a metallic nanoparticle, surface plasmons are generated on the metal dielectric interface yielding a strong electromagnetic field with an evanescent decay on the nanoparticle surface. The strong electromagnetic field
PDF
Album
Letter
Published 30 Aug 2011

Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

  • Manuel R. Gonçalves,
  • Taron Makaryan,
  • Fabian Enderle,
  • Stefan Wiedemann,
  • Alfred Plettl,
  • Othmar Marti and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 448–458, doi:10.3762/bjnano.2.49

Graphical Abstract
  • can be utilized in experiments requiring light confinement. Keywords: nanosphere-lithography; near-field enhancement; plasma etching; soft-lithography; surface plasmons; Introduction Classical electromagnetic theories describing optical transmission through small apertures [1][2] do not take into
  • account the role of surface plasmons on metal films. In contrast to the predictions of these theories, enhanced optical transmission (EOT) was found for arrays of holes in metal films [3]. The transmission enhancements were attributed to the surface plasmons excited in the array [4]. This discovery
  • triggered extensive research on nanostructures that support surface plasmons, namely, nanocavities on metal films, arrays of interacting metal particles and gratings. The coupling between light and localized surface plasmons on metal nanostructures that have been favorably tailored leads to a variety of
PDF
Album
Full Research Paper
Published 16 Aug 2011
Other Beilstein-Institut Open Science Activities