Search results

Search for "antibiotics" in Full Text gives 80 result(s) in Beilstein Journal of Nanotechnology.

Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles

  • Dulce G. Romero-Urbina,
  • Humberto H. Lara,
  • J. Jesús Velázquez-Salazar,
  • M. Josefina Arellano-Jiménez,
  • Eduardo Larios,
  • Anand Srinivasan,
  • Jose L. Lopez-Ribot and
  • Miguel José Yacamán

Beilstein J. Nanotechnol. 2015, 6, 2396–2405, doi:10.3762/bjnano.6.246

Graphical Abstract
  • resistance against almost all antibiotics [3]. As penicillin and other β-lactams were previously very efficient antibiotics in treating staphylococcal infections, the prevalent resistance of methicillin-resistant Staphylococcus aureus (MRSA) has made therapy continuously more complex [4]. S. aureus has also
  • become resistant to antibiotics of last resort, including vancomycin [5], daptomycin [6], and linezolid [7]. β-Lactam antibiotics target the synthesis of peptidoglycan (PG), a cell wall polymer that renders structural strength and counteracts the osmotic pressure of the cytoplasm, known as turgor
  • pressure. MRSA is resistant to all ß-lactam antibiotics due to its production of an extra penicillin-binding protein (PBP2a) [8]. With scarce management options for MRSA, there is a pressing necessity for the development of novel bactericides [9]. S. aureus is capable of causing chronic bone and joint
PDF
Album
Full Research Paper
Published 15 Dec 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • materials [8], for controlled delivery [9], and in biotechnology for the controlled release of biomolecules such as small drugs [10], therapeutic proteins [11], antibiotics [12], and antibodies [13]. In MRI, the relative difference of the signal intensity between two adjoining tissues can be improved by
PDF
Album
Review
Published 24 Feb 2015

Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

  • Dagmar A. Kuhn,
  • Dimitri Vanhecke,
  • Benjamin Michen,
  • Fabian Blank,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1625–1636, doi:10.3762/bjnano.5.174

Graphical Abstract
  • coverglass system, NC-155382, Nunc, Milian, Geneva, Switzerland), stained with Cell trackerTM violet BMQC dye and incubated for 1 hour at 37 °C and 5% CO2 followed by three washing steps with 1× PBS. Finally, transparent RPMI 1640 medium (no 1% L-glutamine, no antibiotics, no fetal calf serum and without
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2014

Antimicrobial properties of CuO nanorods and multi-armed nanoparticles against B. anthracis vegetative cells and endospores

  • Pratibha Pandey,
  • Merwyn S. Packiyaraj,
  • Himangini Nigam,
  • Gauri S. Agarwal,
  • Beer Singh and
  • Manoj K. Patra

Beilstein J. Nanotechnol. 2014, 5, 789–800, doi:10.3762/bjnano.5.91

Graphical Abstract
  • conditions. The spores can survive for prolonged periods in soil despite extremes of temperature, desiccation, chemical treatment and UV exposure [2][3][4][5][6]. The possible development and release of genetically engineered strains that are resistant against antibiotics and vaccines, similar to those
  • nanostructures comparable to established antibiotics as well as their photocatalytic potential. However, we have not come across any report on bactericidal potential of CuO nanoparticles against B. anthracis cells and spores. The earlier findings inspired us to evaluate antibacterial activity of noncorrosive CuO
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2014

Sensing surface PEGylation with microcantilevers

  • Natalija Backmann,
  • Natascha Kappeler,
  • Thomas Braun,
  • François Huber,
  • Hans-Peter Lang,
  • Christoph Gerber and
  • Roderick Y. H. Lim

Beilstein J. Nanotechnol. 2010, 1, 3–13, doi:10.3762/bjnano.1.2

Graphical Abstract
  • resonant frequency of an oscillating microcantilever shifts due to mass adsorption on its surface. The versatility of the microcantilever technique as a chemical/biological sensor has been demonstrated for vapors [15], ions [16], DNA [17][18], proteins [19][20], antibiotics [21] and pathogenic
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities