Search results

Search for "chemisorption" in Full Text gives 82 result(s) in Beilstein Journal of Nanotechnology.

Spontaneous dissociation of Co2(CO)8 and autocatalytic growth of Co on SiO2: A combined experimental and theoretical investigation

  • Kaliappan Muthukumar,
  • Harald O. Jeschke,
  • Roser Valentí,
  • Evgeniya Begun,
  • Johannes Schwenk,
  • Fabrizio Porrati and
  • Michael Huth

Beilstein J. Nanotechnol. 2012, 3, 546–555, doi:10.3762/bjnano.3.63

Graphical Abstract
  • settings, using dispersion-corrected density functional theory, support this assumption. We observe physisorption of the precursor molecule on a fully hydroxylated SiO2 surface (untreated surface) and chemisorption on a partially hydroxylated SiO2 surface (pretreated surface) with a spontaneous
PDF
Album
Full Research Paper
Published 25 Jul 2012

Directed deposition of silicon nanowires using neopentasilane as precursor and gold as catalyst

  • Britta Kämpken,
  • Verena Wulf,
  • Norbert Auner,
  • Marcel Winhold,
  • Michael Huth,
  • Daniel Rhinow and
  • Andreas Terfort

Beilstein J. Nanotechnol. 2012, 3, 535–545, doi:10.3762/bjnano.3.62

Graphical Abstract
  • process of nanoparticles often requires other reagents, e.g., for micelle nanolithography or chemisorption at surface-attached organic monolayers [24][25]. These organic additives (stabilizer/monolayer) might disturb the growth process of the silicon NWs and lead to contaminations, thus they need to be
  • coordinate to the Au nanoparticles. The chemisorption of the nanoparticles proceeded by simple immersion into the respective solution and resulted in surfaces that were evenly, but not closely decorated by the nanoparticles (Figure 8). The average distance between two nanoparticles could be estimated to be
PDF
Album
Full Research Paper
Published 25 Jul 2012

Functionalised zinc oxide nanowire gas sensors: Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces

  • Eric R. Waclawik,
  • Jin Chang,
  • Andrea Ponzoni,
  • Isabella Concina,
  • Dario Zappa,
  • Elisabetta Comini,
  • Nunzio Motta,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2012, 3, 368–377, doi:10.3762/bjnano.3.43

Graphical Abstract
  • semiconductor surface towards chemisorption or else to ensure heterogeneous catalysis of a high proportion of target gas molecules at the sensor surface. High-temperature operation also ensures the complete desorption of gaseous species following transduction. Maintaining a semiconductor gas sensor at a stable
  • decreased number of “active” sites for chemisorption may arise through chemical functionalisation by an organic layer, the effect may be offset by increased rates of gas decomposition or reduced interference caused by moisture or other species present in a gas stream. It should be noted that since
  • chemisorption involves electronic charge transfer, functionalisation of the surface of a metal-oxide semiconductor gas sensor with an organic monolayer will strongly influence the electronic properties of the surface. Transfer of electron density into the semiconductor will reduce the depletion layer, which is
PDF
Album
Full Research Paper
Published 02 May 2012

Surface functionalization of aluminosilicate nanotubes with organic molecules

  • Wei Ma,
  • Weng On Yah,
  • Hideyuki Otsuka and
  • Atsushi Takahara

Beilstein J. Nanotechnol. 2012, 3, 82–100, doi:10.3762/bjnano.3.10

Graphical Abstract
  • groups of organic molecules and the aluminol (AlOH) surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared
  • hybrid. Keywords: chemisorption; imogolite; inorganic nanotube; surface functionalization.; Review Surface functionalization of metal or metal-oxide surfaces has received considerable attention in recent years [1][2][3]. It presents an easy, accurate and precise approach for the fabrication of
  • selectively assemble on the surfaces of metal oxides rather than on SiO2 surfaces in an aqueous medium, due to the sensitivity of Si–O–P bonds to hydrolysis [19][20][21]. In this review paper, the chemisorption and assembly of several phosphonic-acid-containing organic compounds on imogolite nanotubes, based
PDF
Album
Review
Published 02 Feb 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • monolayers may affect the photocatalytic properties of titania as well as be affected by these properties. Likewise, the superhydrophilicity of TiO2 known to be induced upon exposure to UV light [13] may affect the chemisorption process of SAMs. This gives rise to diverse phenomena, which can be utilized in
  • the metallic micro-islands were denser than monolayers chemisorbed on TiO2 substrates that had no metallic islands. Results were explained in terms of charging effects [18]. That charging of the substrate may affect the chemisorption of organosiloxane monolayers can be deduced also from a comparison
  • grafting density with respect to chemisorption by conventional methods (2.8–3.0 molecules per nm2 versus 4.3–4.8 molecules per nm2). It is worth mentioning that a study on organosilane monolayers formed on the surfaces of zirconia and titania (anatase and rutile), by a gas–phase process employing
PDF
Album
Review
Published 20 Dec 2011

STM visualisation of counterions and the effect of charges on self-assembled monolayers of macrocycles

  • Tibor Kudernac,
  • Natalia Shabelina,
  • Wael Mamdouh,
  • Sigurd Höger and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2011, 2, 674–680, doi:10.3762/bjnano.2.72

Graphical Abstract
  • principle, an additional functionality can be introduced in physisorbed molecular monolayers by co-adsorption of, for instance, thiols [8], combining physisorption and chemisorption. It can be envisioned that counterions of charged molecules that are adsorbed at the surface could be used not only to control
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2011

Sensing surface PEGylation with microcantilevers

  • Natalija Backmann,
  • Natascha Kappeler,
  • Thomas Braun,
  • François Huber,
  • Hans-Peter Lang,
  • Christoph Gerber and
  • Roderick Y. H. Lim

Beilstein J. Nanotechnol. 2010, 1, 3–13, doi:10.3762/bjnano.1.2

Graphical Abstract
  • , time resolved manner [13][14]. By an asymmetrical chemisorption of molecules (i.e., on one side of the microcantilever), the sensors can detect processes in “static” mode by measuring the bending of a microcantilever due to stress formation during the adsorption process; or in “dynamic” mode where the
  • shown in Figure 2A, the chemisorption of mPEG–SH chains generates a compressive force that bends the Au-coated microcantilevers downwards. This behavior is significantly different to that of the cantilever pre-functionalized with EG4–C11–SH where no adsorption-related bending is observed and confirms
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities