Search results

Search for "composite materials" in Full Text gives 124 result(s) in Beilstein Journal of Nanotechnology.

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • photocatalysis [47]. As graphene is a zero band gap material and susceptible to oxidative reactions, it is often combined with other semiconductors and metallic nanostructures to form composite materials suitable for various applications, including photocatalysis. Furthermore, due to the exceptional electrical
PDF
Album
Review
Published 03 Aug 2017

Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles

  • Christoph Göbel,
  • Ottokar Klimm,
  • Florian Puchtler,
  • Sabine Rosenfeldt,
  • Stephan Förster and
  • Birgit Weber

Beilstein J. Nanotechnol. 2017, 8, 1318–1327, doi:10.3762/bjnano.8.133

Graphical Abstract
  • temperature. Applications demand compounds with defined properties concerning the size and switchability that are maintained when the compound is integrated into composite materials. Here, we report the synthesis of [Fe(Leq)(Lax)]n coordination polymer (CP) nanoparticles using self-assembled polystyrene-block
  • (low iron content) and soft (low Lamb–Mössbauer factor) composite materials, only the more crystalline samples with a high CP amount (d and e) showing spin crossover were characterised. The corresponding spectra are given in Figure 3 (1d and 3e) and in Supporting Information File 1, Figure S5. The
  • Mössbauer parameters are summarised in Supporting Information File 1, Table S2. For the composite materials, different iron species are possible due to the coordination of the starting complex [Fe(Leq)] to the vinylpyridine parts of the equatorial ligand, which can be distinguished using Mössbauer
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2017

Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization

  • Mohamed Hamed Misbah,
  • Mercedes Santos,
  • Luis Quintanilla,
  • Christina Günter,
  • Matilde Alonso,
  • Andreas Taubert and
  • José Carlos Rodríguez-Cabello

Beilstein J. Nanotechnol. 2017, 8, 772–783, doi:10.3762/bjnano.8.80

Graphical Abstract
  • in (composite) materials for bone regeneration [2][8]. Due to the correlation between the (crystal) structure and properties of CP, it is important to be able to control its nanostructures [9][10][11]. For example, hollow and mesoporous CP particles can be used for drug delivery due to their high
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • comprehensively discuss the different methods for the synthesis of graphene and graphene–NP hybrid systems, but do not cover graphene–NPs composite materials. We then separately review the synthesis, the morphology of graphene–TMO NP hybrids of first row, d-block element oxides, and their applications in various
  • deposition methods [195][196]. Like other graphene–metaloxide hybrid systems, NiO–graphene hybrids are largely used for LIB applications [197][198][199]. Monolayer graphene/NiO nanosheet composite materials also have large application for supercapacitors [200][201][202]. 3D NiO/ultrathin derived graphene
PDF
Album
Review
Published 24 Mar 2017

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

  • Guoliang Gao,
  • Yan Jin,
  • Qun Zeng,
  • Deyu Wang and
  • Cai Shen

Beilstein J. Nanotechnol. 2017, 8, 649–656, doi:10.3762/bjnano.8.69

Graphical Abstract
  • . of composite materials. In this method, an Fe-based metal organic framework [MIL-88B (Fe)] was used as a precursor for the synthesis of spindle-like α-Fe2O3 nanoparticles with a mesoporous structure of less than 20 nm. When used as anode material for LIBs, these nanoparticles demonstrated a capacity
PDF
Album
Full Research Paper
Published 17 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • many advanced composite materials have been produced for diverse applications [13]. The possibility to evaporate practically any solid material, tune the kinetic energy of particles between 0.1 to 1000 eV, as well as the ability to control the amount of deposited material from about 1/100th of a
PDF
Album
Full Research Paper
Published 07 Mar 2017

The longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX)

  • Florent Pessina and
  • Denis Spitzer

Beilstein J. Nanotechnol. 2017, 8, 452–466, doi:10.3762/bjnano.8.49

Graphical Abstract
  • advantages of this simple technique to process energetic compounds as pure and composite materials. The process sprays a solution containing a dissolved compound or particles in suspension into a hot gaseous stream (air or nitrogen) thus crystallizing into particles and/or drying the granules. van der
  • method. However, the SFE clearly demonstrated the feasibility of faster and quite efficient crystallization of inorganic particles from precursors. Le Brize and Spitzer [120] processed energetic composite materials by SFE: a sub-micrometer structure was evidenced from SEM pictures and an higher degree of
PDF
Album
Supp Info
Review
Published 17 Feb 2017

Biological and biomimetic materials and surfaces

  • Stanislav Gorb and
  • Thomas Speck

Beilstein J. Nanotechnol. 2017, 8, 403–407, doi:10.3762/bjnano.8.42

Graphical Abstract
  • siliceous teeth consist of composite materials with silica-based cap-like structures situated on chitin-bearing cuticle sockets that are connected through flexible resilient areas containing resilin protein. This composite architecture contributes to the performance of the siliceous teeth in damaging
PDF
Editorial
Published 08 Feb 2017

Graphene–polymer coating for the realization of strain sensors

  • Carmela Bonavolontà,
  • Carla Aramo,
  • Massimo Valentino,
  • Giampiero Pepe,
  • Sergio De Nicola,
  • Gianfranco Carotenuto,
  • Angela Longo,
  • Mariano Palomba,
  • Simone Boccardi and
  • Carosena Meola

Beilstein J. Nanotechnol. 2017, 8, 21–27, doi:10.3762/bjnano.8.3

Graphical Abstract
  • various composite materials. Electrical current variation due to the mechanical stress as measured on a PMMA/graphene sample. Time dependence of the electrical current for PMMA/graphene. A constant voltage bias V = 5 V is applied to the sample while the applied force varies cyclically between unload (F
PDF
Album
Full Research Paper
Published 03 Jan 2017

Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide

  • Paul Chesler,
  • Cristian Hornoiu,
  • Susana Mihaiu,
  • Cristina Vladut,
  • Jose Maria Calderon Moreno,
  • Mihai Anastasescu,
  • Carmen Moldovan,
  • Bogdan Firtat,
  • Costin Brasoveanu,
  • George Muscalu,
  • Ion Stan and
  • Mariuca Gartner

Beilstein J. Nanotechnol. 2016, 7, 2045–2056, doi:10.3762/bjnano.7.195

Graphical Abstract
  • sensors must be selective towards a specific gas in a given gaseous environment. This is still a challenging issue for the commercially available gas sensors. As it was discussed in the introduction section of this article, selectivity towards a specific gas may be tuned by using composite materials. For
PDF
Album
Full Research Paper
Published 22 Dec 2016

Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors

  • Celia García-Hernández,
  • Cristina García-Cabezón,
  • Fernando Martín-Pedrosa,
  • José Antonio De Saja and
  • María Luz Rodríguez-Méndez

Beilstein J. Nanotechnol. 2016, 7, 1948–1959, doi:10.3762/bjnano.7.186

Graphical Abstract
  • biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10−7 mol·L−1 to be attained. Keywords
PDF
Album
Full Research Paper
Published 08 Dec 2016

3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate

  • Aleksey A. Egorov,
  • Alexander Yu. Fedotov,
  • Anton V. Mironov,
  • Vladimir S. Komlev,
  • Vladimir K. Popov and
  • Yury V. Zobkov

Beilstein J. Nanotechnol. 2016, 7, 1794–1799, doi:10.3762/bjnano.7.172

Graphical Abstract
  • diameter ≈800 μm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions. Keywords: 3D printing; bone graft; calcium phosphate; composite materials; sodium
  • the carboxylate group of alginate. This physical bonding translates to mixtures that are rich in electronic pairs leading to a higher reactivity and mineralization potential that can be transformed into composite materials [13]. According to X-ray diffraction data, synthesis in the presence of
  • properties of 3D printed samples are relatively low due to the weak bonding between different printed layers. However, the compressive strength of composite materials increased with alginate concentration from 0.45 MPa up to about 1.0 MPa at p ≤ 0.005. The increase in the compressive strength can be
PDF
Album
Letter
Published 21 Nov 2016

Effective intercalation of zein into Na-montmorillonite: role of the protein components and use of the developed biointerfaces

  • Ana C. S. Alcântara,
  • Margarita Darder,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2016, 7, 1772–1782, doi:10.3762/bjnano.7.170

Graphical Abstract
  • zein becomes essential for the preparation of materials based on this protein. In this sense, there are reports on zein–montmorillonite composite materials prepared by thermo-plasticization and blown-extrusion techniques [20][21], or from protein solved in ethanol/water mixtures [22]. However, in these
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2016

Properties of Ni and Ni–Fe nanowires electrochemically deposited into a porous alumina template

  • Alla I. Vorobjova,
  • Dmitry L. Shimanovich,
  • Kazimir I. Yanushkevich,
  • Sergej L. Prischepa and
  • Elena A. Outkina

Beilstein J. Nanotechnol. 2016, 7, 1709–1717, doi:10.3762/bjnano.7.163

Graphical Abstract
  • the alumina template are presented in Table 4. Further, the investigations of magnetic properties of the obtained composite materials, such as Curie temperature (TC) and specific magnetization as a function of temperature σ(T) have been performed and analyzed. The temperature dependence of σ(T) was
PDF
Album
Full Research Paper
Published 14 Nov 2016

A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

  • Vardan Galstyan,
  • Elisabetta Comini,
  • Iskandar Kholmanov,
  • Andrea Ponzoni,
  • Veronica Sberveglieri,
  • Nicola Poli,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2016, 7, 1421–1427, doi:10.3762/bjnano.7.133

Graphical Abstract
  • , sensitivity and selectivity) with respect to the application of ZnO nanomaterials in chemical gas sensors that need to be overcome [7][14]. Hybrid structures composed of two or more different materials with diverse functional properties are of great interest to develop advanced composite materials for
PDF
Album
Full Research Paper
Published 10 Oct 2016

Fabrication and characterization of branched carbon nanostructures

  • Sharali Malik,
  • Yoshihiro Nemoto,
  • Hongxuan Guo,
  • Katsuhiko Ariga and
  • Jonathan P. Hill

Beilstein J. Nanotechnol. 2016, 7, 1260–1266, doi:10.3762/bjnano.7.116

Graphical Abstract
  • improve the structural behavior of composite materials through reinforcement. This arises from two well-known, long standing problems in this research field: (a) inhomogeneous dispersion of the filler, which can lead to aggregation and (b) insufficient reinforcement arising from bonding interactions
  • opens promising avenues for the development and manufacturing of nanocarbon composites for a variety of commercial applications. The fabrication and testing of composite materials with branched MWCNTs as well as measurements of electrical conductivity are currently in progress. Experimental The MWCNTs
PDF
Album
Full Research Paper
Published 05 Sep 2016

Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

  • Tomasz Tański,
  • Wiktor Matysiak and
  • Barbara Hajduk

Beilstein J. Nanotechnol. 2016, 7, 1141–1155, doi:10.3762/bjnano.7.106

Graphical Abstract
  • , thermal and tribological design properties of the obtained composite materials can be controlled. The studies carried out hitherto have shown [14][15][16][17] that using SiO2 or TiO2 nanoparticles in a polymer matrix as the reinforcing phase (in the case of SiO2 even amounts as low as 1 wt % and without
PDF
Album
Full Research Paper
Published 05 Aug 2016

Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites

  • Protima Rauwel,
  • Augustinas Galeckas,
  • Martin Salumaa,
  • Frédérique Ducroquet and
  • Erwan Rauwel

Beilstein J. Nanotechnol. 2016, 7, 1075–1085, doi:10.3762/bjnano.7.101

Graphical Abstract
  • properties compared to their bulk counterparts. During the last decade, composite materials have spurred large interest, and with the rise of nanotechnology, the development of new nanocomposite materials promoting new properties has taken a step forward. These nanocomposite materials will be the key
PDF
Album
Full Research Paper
Published 26 Jul 2016

Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation

  • Amlan Dutta,
  • Arup Kumar Raychaudhuri and
  • Tanusri Saha-Dasgupta

Beilstein J. Nanotechnol. 2016, 7, 228–235, doi:10.3762/bjnano.7.21

Graphical Abstract
  • presence of an additional surface. Hollow nanostructures are being used industrially as fillers for the manufacturing of lightweight composite materials. Besides this structural function, they have also been demonstrated to function as the active elements of recoverable catalysts and highly sensitive
PDF
Album
Full Research Paper
Published 10 Feb 2016

Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

  • Nik J. Walch,
  • Alexei Nabok,
  • Frank Davis and
  • Séamus P. J. Higson

Beilstein J. Nanotechnol. 2016, 7, 209–219, doi:10.3762/bjnano.7.19

Graphical Abstract
  • -by-layer (LbL) deposition. Films composed of these new graphene composite materials were then characterised using SEM, AFM, and spectroscopic ellipsometry. The study of SPR in gold films coated with graphene using total internal reflection ellipsometry was carried out for the first time. Experimental
  • films of graphene-surfactant composites Langmuir–Blodgett and Langmuir–Schaefer deposition Both composite materials obtained, e.g., graphene(+)CTAB and graphene(−)SDS, appeared to be soluble in water due to the presence of ionic groups, NMe3+ and SO3−, respectively. Yet, the presence of alkyl chains and
PDF
Album
Full Research Paper
Published 08 Feb 2016

Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas

  • Mario Hentschel,
  • Bernd Metzger,
  • Bastian Knabe,
  • Karsten Buse and
  • Harald Giessen

Beilstein J. Nanotechnol. 2016, 7, 111–120, doi:10.3762/bjnano.7.13

Graphical Abstract
  • properties of such composite materials can be modelled by nonlinear extension of the Maxwell–Garnett [31] and effective-medium theories [32][33]. Additionally, difference frequency mixing [34], four wave mixing, second harmonic generation, and other nonlinear optical processes were reported. In recent years
PDF
Album
Full Research Paper
Published 26 Jan 2016

Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

  • Balazs Farkas,
  • Marina Rodio,
  • Ilaria Romano,
  • Alberto Diaspro,
  • Romuald Intartaglia and
  • Szabolcs Beke

Beilstein J. Nanotechnol. 2015, 6, 2217–2223, doi:10.3762/bjnano.6.227

Graphical Abstract
  • procedure. With the physical tuning, it is also possible to achieve complex scaffold structures, for instance, mimicking composite materials. The PPF used in this work is not commercially available. The synthesis is reported elsewhere [22]. The PI phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (BAPO) was
PDF
Album
Full Research Paper
Published 25 Nov 2015

Towards multifunctional inorganic materials: biopolymeric templates

  • Claudia Steinem and
  • Joachim Bill

Beilstein J. Nanotechnol. 2015, 6, 1698–1699, doi:10.3762/bjnano.6.172

Graphical Abstract
  • engineering. The manufacturing of such materials is usually performed at elevated temperature and/or pressure combined with enormous experimental effort and extensive equipment. Consequently, problems arise due to shrinkage or grain growth. In addition, the production of composite materials with
PDF
Editorial
Published 05 Aug 2015

In situ SU-8 silver nanocomposites

  • Søren V. Fischer,
  • Basil Uthuppu and
  • Mogens H. Jakobsen

Beilstein J. Nanotechnol. 2015, 6, 1661–1665, doi:10.3762/bjnano.6.168

Graphical Abstract
  • fabricating homogeneous SU-8-based metal nanocomposite thin films with in situ generated silver nanoparticles. These composite materials can be deposited on wafers by using standard spin coating techniques and subsequently structured with UV lithography. The nanocomposite is prepared by dissolving AgNO3
PDF
Album
Letter
Published 30 Jul 2015

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • a polymeric carbonaceous matrix (see below in Figure 7 taken with a Philips EM-430 TEM at 300 keV). This matrix contains all the ligand elements: carbon, oxygen, fluorine, and silicon as well as probably some hydrogen (not detectable by EDX) [42]. The difference between amorphous and nano-composite
  • materials obtained for the Cu(II)(hfac)2 and (hfac)Cu(I)VTMS precursor, respectively, can be attributed to the lower thermal stability of (hfac)CuVTMS which is 63 °C compared to 250 °C for Cu(hfac)2. Electrical measurements showed that the as-deposited FEBID lines from Cu(hfac)2 were highly resistive with a
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015
Other Beilstein-Institut Open Science Activities