Search results

Search for "endothelial" in Full Text gives 83 result(s) in Beilstein Journal of Nanotechnology.

Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure

  • Alicja Panas,
  • Andreas Comouth,
  • Harald Saathoff,
  • Thomas Leisner,
  • Marco Al-Rawi,
  • Michael Simon,
  • Gunnar Seemann,
  • Olaf Dössel,
  • Sonja Mülhopt,
  • Hanns-Rudolf Paur,
  • Susanne Fritsch-Decker,
  • Carsten Weiss and
  • Silvia Diabaté

Beilstein J. Nanotechnol. 2014, 5, 1590–1602, doi:10.3762/bjnano.5.171

Graphical Abstract
  • A549, THP-1, mast and endothelial cells reacted more sensitive under classical submerged conditions with respect to release of IL-8 and production of ROS [10]. Therefore, more NPs with different chemistries and sizes as well as different cell culture models need to be assessed in order to either
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2014

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • reported to be cytotoxic [123][124], NiTi alloy nanoparticles tend to show no significant adverse effects. This was reported for endothelial and smooth muscle cells where nanoparticle concentrations of less than 10 µM were non-toxic [11]. On the contrary, NiTi coatings are even reported to improve the
PDF
Album
Video
Review
Published 12 Sep 2014

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • type mice, we show that 30 min after injection polymer-coated nanocrystals are primarily taken up by liver sinusoidal endothelial cells. In contrast, by using wild type, Ldlr-/- as well as Apoe-/- mice we show that nanocrystals embedded within lipid micelles are internalized by Kupffer cells and, in a
  • pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications. Keywords
  • : hepatocytes; inflammation; Kupffer cells; liver sinusoidal endothelial cells; nanoparticle toxicity; nanoparticle uptake; quantum dots; superparamagnetic iron-oxide nanocrystals; Introduction The superior optical properties of QDs compared to organic dyes render them promising candidates for the demands of
PDF
Album
Full Research Paper
Published 02 Sep 2014

Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

  • Fabian Herzog,
  • Kateryna Loza,
  • Sandor Balog,
  • Martin J. D. Clift,
  • Matthias Epple,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1357–1370, doi:10.3762/bjnano.5.149

Graphical Abstract
  • proliferation and migration (chemotaxis) both decreased, and the release of cytokines was affected. Increased IL-8 and decreased IL-6 and vascular endothelial growth factor (VEGF) levels were detected at high Ag NP concentrations [65]. These studies however, were obtained with human mesenchymal stem cells
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2014

Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

  • Alina Maria Holban,
  • Valentina Grumezescu,
  • Alexandru Mihai Grumezescu,
  • Bogdan Ştefan Vasile,
  • Roxana Truşcă,
  • Rodica Cristescu,
  • Gabriel Socol and
  • Florin Iordache

Beilstein J. Nanotechnol. 2014, 5, 872–880, doi:10.3762/bjnano.5.99

Graphical Abstract
  • ) bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections. Keywords: antimicrobial; chitosan; magnetite
  • secondary electron beams with energies of 30 keV on samples covered with a thin gold layer. Cell viability Human endothelial cells (EAhy926 cell line, ATCC, USA) were grown in Dulbecco's Modified Eagle Medium (DMEM) culture medium containing 10% Fetal Bovine Serum (FBS), and 1% penicillin and neomycin
  • (Sigma Aldrich, St. Louis, MO, USA). For cell proliferation and viability CellTiter96 Non-Radioactive Cell Proliferation Assay, (Promega, Madison, USA) was used. Endothelial cells were seeded in a 96-well plate at a density of 5 × 103 cells/well in DMEM medium, supplemented with 10% FBS, and incubated
PDF
Album
Full Research Paper
Published 18 Jun 2014

Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

  • Tatiana Borisova,
  • Natalia Krisanova,
  • Arsenii Borуsov,
  • Roman Sivko,
  • Ludmila Ostapchenko,
  • Michal Babic and
  • Daniel Horak

Beilstein J. Nanotechnol. 2014, 5, 778–788, doi:10.3762/bjnano.5.90

Graphical Abstract
  • cells possess receptors for D-mannose on their membranes, that is, MMR on dendritic cells subsets, macrophages, lymphatic and hepatic endothelium, Endo 180 on subsets of endothelial cells, DC-SIGNR on hepatic and lymphatic endothelial cells as well as serum contains mannose binding lectines (MBL) [10
  • nanoparticles to penetrate the blood–brain barrier increased significantly in the presence of an external magnetic force. Therefore, particles can be transported through the blood–brain barrier and taken up by astrocytes, while they do not affect the viability of the endothelial cells [26]. On the cellular
PDF
Album
Full Research Paper
Published 04 Jun 2014

Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating

  • Tingjun Lei,
  • Alicia Fernandez-Fernandez,
  • Romila Manchanda,
  • Yen-Chih Huang and
  • Anthony J. McGoron

Beilstein J. Nanotechnol. 2014, 5, 313–322, doi:10.3762/bjnano.5.35

Graphical Abstract
  • hyperthermia (HT). HT is currently used in clinical trials for cancer therapy in combination with radiotherapy and chemotherapy. One of the potential problems of HT is that it can up-regulate hypoxia-inducible factor-1 (HIF-1) expression and enhance vascular endothelial growth factor (VEGF) secretion. Results
  • of both transcription factors. Keywords: hypoxia-inducible factor-1; IR820; nanoparticle; poly(glycerol malate co-dodecanedioate) (PGMD); vascular endothelial growth factor; Introduction The synthesis and development of novel polymers and their use for nanoparticle (NP) synthesis has been an
  • endothelial growth factor (VEGF), and poor lymphatic clearance from tumor sites [4]. Because of these advantages, we synthesized a new formulation of polymeric NPs for image-guided therapy based on the polymer poly(glycerol malate co-dodecanedioate) (PGMD) developed in our lab. The work described in this
PDF
Album
Supp Info
Full Research Paper
Published 18 Mar 2014

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • diffuses into the diseased cell resulting in cell death. Several factors need to be considered for the successful use of nanoparticles in targeted drug delivery. Biological barriers, including physical surfaces and the reticulo-endothelial system (RES), which detects and sequesters blood-borne particles
PDF
Album
Full Research Paper
Published 15 Nov 2012
Other Beilstein-Institut Open Science Activities