Search results

Search for "transport" in Full Text gives 814 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • conversion of absorbed light into electricity [43]. The carrier diffusion length within PbS CQD solar cells aligns closely with the thickness of the CQD films. This correlation introduces a tradeoff between light absorption and charge transport. As the thickness of the CQD film increases to enhance light
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • mucosa is also being investigated because it is innervated by the trigeminal nerve and provides a possible indirect transport of the drugs to the brain via a systemic pathway [48]. The focus of research interest is the olfactory region in the upper part of the nasal cavity lined up with the olfactory
  • , goblet cells, and basal cells [55]. Transport mechanisms for N2B delivery The transport mechanisms for the N2B delivery are yet to be fully understood. It is suggested that olfactory and trigeminal nerves are responsible for direct transport to the brain through the nasal route (Figure 3). For the
  • by Li et al. showed that the trigeminal pathway could be the dominant pathway for the N2B delivery of intact polymeric NPs [57]. Furthermore, because of the highly vascularized nature of the respiratory region of the nose, drug transport can also follow a systemic pathway through this region [58
PDF
Album
Review
Published 12 Nov 2024

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • Torr. After that, the gas mixture of Ar/O2 ≈ 4:1 at a flow rate of ≈300 sccm was introduced and used as a transport gas, which ensured the growth condition to be at atmospheric pressure. The growth was executed at a temperature range of T = 600–700 °C. After growth for 6–10 h, the CVD system was cooled
PDF
Album
Full Research Paper
Published 11 Nov 2024

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • ligustica) facilitate nectar-dipping by minimizing drag, enabling the bees to feed more efficiently [75]. The unique morphology and dynamic movement of the bee’s hairy tongue optimizes nectar feeding while conserving energy, providing insights into design methodologies for fluid transport devices using
  • could achieve enhanced compactness and versatility, allowing for easy transport and storage, as well as efficient adaptation to various environments and mission requirements. Microwasps exhibit remarkable adaptations in their wing structure, offering unique insights for biomimetic applications. Many
  • prey and subsequently transport it in flight to the nests, using either mandibles, legs or even the sting to keep the prey. Most predatory wasps use front and mid legs to carry the prey, while a few wasp species hold their prey only with the hind legs [189]. The efficient prey-loading mechanisms of
PDF
Album
Review
Published 05 Nov 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • ) designed to transport therapeutic agents with precise delivery to tumor sites. This approach aims to mitigate toxic effects associated with off-target drug delivery and optimize therapeutic efficacy. For decades, the enhanced permeability and retention (EPR) effect has stood as the central mechanism for
  • primarily occurs via transendothelial transport pathways [6][7]. Regardless of the mode of NP extravasation, active targeting strategies have been widely explored to further enhance NP accumulation in tumors and NP internalization by cancer cells [8][9]. Active targeting involves the modification of NPs
  • targeting can also promote usNP transport to the cell interior, potentially leading to more effective drug delivery and chemotherapy. It must be noted that the success of these strategies relies on efficient passive targeting in the first place [83][84]. Nevertheless, cumulative evidence suggests that
PDF
Album
Review
Published 30 Sep 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • physiological functions. They can effectively transport therapeutic agents to targeted cells or specific intracellular regions through passive targeting or ligand-based strategies [9][10][11]. The use of certain polymers could potentially enable sustained drug levels for controlled release and extended
PDF
Album
Full Research Paper
Published 26 Sep 2024

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • 2004, the unique properties of two-dimensional materials have sparked intense research interest regarding their use as alternative materials in various photonic applications. Transition metal dichalcogenide monolayers have been proposed as transport layers in photovoltaic cells, but the promising
  • characteristics of group IV–VI dichalcogenides are yet to be thoroughly investigated. This manuscript reports on monolayer Ge2Se2 (a group IV–VI dichalcogenide), its optoelectronic behavior, and its potential application in photovoltaics. When employed as a hole transport layer, the material fosters an
  • theory; hole transport layer; optical properties; solar cells; Introduction Reducing fossil fuels and their harmful environmental impact requires improvements in green, sustainable energy sources. Among the various sources of green energy generation, solar energy has been identified as the most
PDF
Album
Full Research Paper
Published 11 Sep 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • reactor. Plausible charge transport mechanism Figure 8 shows a schematic mechanism of the photocatalytic activity of the p–n TiO2/SiNWs hierarchical structures. According to previous studies the energy bandgaps of p-Si and n-type TiO2 were assumed to be 1.1 eV and 3.3 eV, respectively [54][55][56
  • p-Si NW Conclusion A p–n junction TiO2/SiNWs photocatalyst was synthesized via ALD and utilized for light-driven OCM. TiO2/SiNWs revealed excellent performance owing to the smooth transport of photogenerated electrons in the p–n junction, which lowers the e–h recombination rate. The nanowire array
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • -volume ratio, allowing for efficient absorption and transport of drugs. Furthermore, alginate-based nanoparticles are biocompatible and biodegradable, minimizing the risk of long-term side effects. Boronated chitosan/alginate nanoparticles (BCHI/ALG NPs) were developed and evaluated as a targeted
PDF
Album
Review
Published 22 Aug 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • analysis in the field, making it ideal for rapid screening and preliminary investigations. The portable spectrometer is user friendly, compact, and the lightweight design ensures minimal sample preparation and ease of transport, providing flexibility in diverse application scenarios. To capitalize on the
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • rings, which prevents planar deformations [33]. The same phenomenon explains the high thermal conductivity of up to 3000 W·m−1·K−1 [34][35] and the outstanding electrical properties [36][37][38]. Compared to conventional 3D materials, the understanding of electronic transport and carrier dynamics in
  • graphene is significantly complicated by the extreme anisotropy intrinsic to its crystal structure and its large compositional and structural variability [39]. Beyond the obvious consequences arising from the chemical composition, some of the main aspects affecting electronic transport in graphene are
  • graphene-based composites [39]. These aspects are especially relevant in determining the in-plane electronic transport within each layer of graphene (intra-layer transport). Conversely, the electronic coupling between different layers dominates the out-of-plane electronic transport from one layer to
PDF
Album
Review
Published 16 Aug 2024

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • ) are important tools to diagnose and treat diseases, and have proven useful in basic mechanistic studies of cells and animals. Thus, knowledge about cellular uptake, intracellular transport, and metabolism of NPs in cells, as well as their biodistribution, degradation, and excretion following
  • with bound ligands enter by the same mechanism as the free ligands? Will the NPs affect intracellular transport and what are the consequences for the cell or tissue? In vivo, one might want NPs to be transcytosed across a cell layer. However, not much is known about the requirements for NPs to cross a
  • studies, and transport in vivo also holds true for these particles. We will start by describing the status and challenges when it comes to cellular uptake mechanisms, and in the last part discuss interactions of NPs with tissues and biodistribution of these particles. Endocytic Pathways Involved in
PDF
Album
Perspective
Published 12 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • lowest current sensitivity due to their planar structure, conventional semiconductor materials, and typical carrier transport, as observed in FET-biosensors, such as DC DG JL MOSFET-based [96] and SE SB FET-based biosensors [93]. On the other hand, 2D TFET-based biosensors showed improved sensitivity due
  • nanotube junctionless surrounding heterogate structure combined with junctionless concept, and tunnel mechanism of carrier transport [60] in comparison with other conventional metal gate TFET-biosensors, such as core–shell junctionless TFET (CS NT JL TFET)-based biosensors [62] and PKD TFET-based
PDF
Album
Review
Published 06 Aug 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • house nerves, lymphatics, as well as the blood vessels that are responsible for the transport of nutrients necessary for the maintenance of bone cells and tissues. The hierarchical organization and the multichannel structure of bone tissue support both nutrition and metabolism, increase bone strength
  • natural bone structure with appropriate porosity and fulfill the functions of transport as well as the exchange of substances. Biomaterials should also help cells to adhere and maintain their normal proliferative and differentiation capacity. Nanofiber scaffolds are at the forefront of these types of
PDF
Album
Review
Published 25 Jul 2024

Identification of structural features of surface modifiers in engineered nanostructured metal oxides regarding cell uptake through ML-based classification

  • Indrasis Dasgupta,
  • Totan Das,
  • Biplab Das and
  • Shovanlal Gayen

Beilstein J. Nanotechnol. 2024, 15, 909–924, doi:10.3762/bjnano.15.75

Graphical Abstract
  • or passive transport across the cell membrane [12]. Excessive absorption by normal cells enables metal oxide nanoparticles to engage with various subcellular organelles, initiating diverse signaling pathways to generate a stress response within cells. This results in the production of free radicals
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • transport [14][15]. At each stage of the photocatalytic process sequence, the intermixing of TMD materials is intended to efficiently enhance light absorption, photogeneration of charge carriers, and activation of the surface redox reaction [16][17]. Furthermore, TMD materials are known to possess favorable
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Elastic modulus of β-Ga2O3 nanowires measured by resonance and three-point bending techniques

  • Annamarija Trausa,
  • Sven Oras,
  • Sergei Vlassov,
  • Mikk Antsov,
  • Tauno Tiirats,
  • Andreas Kyritsakis,
  • Boris Polyakov and
  • Edgars Butanovs

Beilstein J. Nanotechnol. 2024, 15, 704–712, doi:10.3762/bjnano.15.58

Graphical Abstract
  • pressure chemical vapour transport in a horizontal quartz tube reactor (18 mm inner diameter) according to the method reported in [2]. The process involved loading a ceramic boat with 0.15 g of Ga2O3 powder (99.99%, Alfa Aesar) at the centre of the quartz tube. Oxidised silicon wafers SiO2/Si (100) coated
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • unwanted objects. The capturing can occur via sieving, where food larger than the gaps between the fibers gets trapped, or through hydrodynamic interactions that transport food to the fiber surface, where it can stick and become trapped [116]. At the largest scales, baleen whales (Mysticeti) use keratinous
  • apart [121][122]. While the microvilli contain actin and myosin, which together enable motility during escapes and help to transport trapped organic matter for consumption [123], they function passively when filtering organic matter. The structure driving the fluid flow through the filter remains
PDF
Album
Review
Published 06 Jun 2024

Comparative analysis of the ultrastructure and adhesive secretion pathways of different smooth attachment pads of the stick insect Medauroidea extradentata (Phasmatodea)

  • Julian Thomas,
  • Stanislav N. Gorb and
  • Thies H. Büscher

Beilstein J. Nanotechnol. 2024, 15, 612–630, doi:10.3762/bjnano.15.52

Graphical Abstract
  • secretion to the surface is facilitated through pores in the superficial layer [64] (Figure 7C,E). The cuticle layering and morphology of the arolium and euplantulae facilitate the absorption, storage, and distribution of the produced adhesive secretion within the attachment pads, enabling its transport to
  • layer may potentially restrict the flow of adhesive secretion, thereby reducing the risk of excessive fluid production. Schmitt and Betz [45] also postulated a comparable transport pathway for adhesive secretions in the smooth attachment pads of G. portentosa. There, the adhesive secretion produced by
PDF
Album
Full Research Paper
Published 29 May 2024

Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface

  • Niklas Humberg,
  • Lukas Grönwoldt and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2024, 15, 556–568, doi:10.3762/bjnano.15.48

Graphical Abstract
  • . They allow for electron transport along the long axes of the 1D aggregates, while a confinement effect is present along their short axes. Hence, they are considered as building blocks for new generations of devices for computing, photovoltaics, thermoelectrics, and energy storage [5][6][7]. Furthermore
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems

  • Shan He,
  • Julen Segura Abarrategi,
  • Harbil Bediaga,
  • Sonia Arrasate and
  • Humberto González-Díaz

Beilstein J. Nanotechnol. 2024, 15, 535–555, doi:10.3762/bjnano.15.47

Graphical Abstract
  • possible nanomedicine strategies for NDD transport to the central nervous system (CNS) [9][10]. For simplicity, we are going to call them nanoparticle neuronal diseases drug delivery systems (N2D3Ss). N2D3Ss have the ability to protect NDDs from chemical and enzymatic degradation, direct the active
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2024

Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods

  • Veaceslav Ursaki,
  • Tudor Braniste,
  • Victor Zalamai,
  • Emil Rusu,
  • Vladimir Ciobanu,
  • Vadim Morari,
  • Daniel Podgornii,
  • Pier Carlo Ricci,
  • Rainer Adelung and
  • Ion Tiginyanu

Beilstein J. Nanotechnol. 2024, 15, 490–499, doi:10.3762/bjnano.15.44

Graphical Abstract
  • networks of microtetrapods and has been proposed for microfluidic applications. In this paper, a cost-effective technological approach is proposed for the fabrication of aero-ZnS by using physical vapor transport with Sn2S3 crystals and networks of ZnO microtetrapods as precursors. The morphology of the
  • sensor applications. Keywords: aeromaterial; crystallographic structure; luminescence; physical vapor transport; scanning electron microscopy (SEM); X-ray diffraction (XRD); Introduction Porous materials represent a class of solid-state networks widely used in adsorptive and photocatalytic removal of
  • aeromaterial. However, HVPE is an expensive technology. The goal of this paper is to demonstrate a cost-effective vapor transport approach for the preparation of ZnS aeromaterials. Results and Discussion The initial ZnO template, consisting of microtetrapods with microrod arms of 10–30 µm length, was
PDF
Album
Full Research Paper
Published 02 May 2024

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • 0.53 ± 1.62 mg (Table 2). Similar results were found between Formulations A and B when the DCS nanocrystals were loaded in the transdermal delivery system. These results suggested that passive transport may be one of the driving forces for the penetration of both DCS nanocrystals and commercial DCS
  • future. In addition, we found that combining passive transport and EPR-like force allowed DCS nanocrystals to overcome their high hydrophilic properties and penetrate the skin layer. These formulations can be applied as a reservoir patch system for long-term transdermal delivery. In summary, DCS
PDF
Album
Full Research Paper
Published 25 Apr 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • tunneling current during approach exceeds the current during retraction, I↓ > I↑, which contrasts the opposite order for graphene on SiC(0001). On the basis of the experimental data alone it is difficult to identify a rationale for this observation. Indeed, electron transport across the junction depends on
  • the tip–graphene and graphene–surface hybridization [23][65]. Therefore, simulations of the non-equilibrium charge transport across the junction are required for a detailed understanding of the observed current traces. Conclusion A combination of STM and AFM experiments unravels the nature of defects
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • resistance. However, the theoretical modeling shows that the modulation of the transport gap under strain is sensitive to the degree of asymmetry of the grain boundaries. While the symmetric grain boundaries remain metallic in the presence of uniaxial strain, the transport gap of the asymmetric
  • schematic of a NCG film under strain correlated with the transport of the film. The black dots represent the grain position, and the arrows represent the long axis of non-spherical grains. At the beginning, marked as point A on the curve, the grains are randomly oriented. As the strain is applied, the
  • %) indicating a similar piezoresistance mechanism of grains moving apart and increasing tunneling distance. This is shown as point C in the transport in Figure 4c, where the grains are locked and cannot rotate, and the increase in resistance only occurs because of increased distance between grains. Above 1.6
PDF
Album
Full Research Paper
Published 08 Apr 2024
Other Beilstein-Institut Open Science Activities