Search results

Search for "biomimetic" in Full Text gives 133 result(s) in Beilstein Journal of Nanotechnology.

Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals

  • Adrian Klein and
  • Horst Bleckmann

Beilstein J. Nanotechnol. 2011, 2, 276–283, doi:10.3762/bjnano.2.32

Graphical Abstract
  • between neighbouring parts of the canal. The present study is the first to measure the performance of ALLCs equipped with optical ANs. This has enabled us to illustrate the potential of optical ANs and of biomimetic ALLCs. In general, ALLCs can be used to measure and quantify air and water motions, but
PDF
Album
Full Research Paper
Published 06 Jun 2011

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

  • Anna J. Schulte,
  • Damian M. Droste,
  • Kerstin Koch and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 228–236, doi:10.3762/bjnano.2.27

Graphical Abstract
  • -based wetting characteristics of petals seem to offer a great alternative for the development of biomimetic superhydrophobic materials for micro droplet transport in micro fluidic systems, sensors or optical devices [19][20]. These hierarchically designed petal surfaces, with micropapillae and cuticular
  • end biomimetic replicas of four petals, differing in their surface morphology, were generated and their wetting behavior was examined by measuring the static CA and the TA. Finally, the contact area between a water droplet and the Viola petal surface was examined and superhydrophobic artificial petal
  • that the combination of high micropapillae with high ar, sharp tips and small peak to peak distances is required for the design of biomimetic superhydrophobic petal surfaces with low hysteresis. The cuticular folds also have an influence on the wetting stage. On Violar the micropapillae are completely
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2011

Functional morphology, biomechanics and biomimetic potential of stem–branch connections in Dracaena reflexa and Freycinetia insignis

  • Tom Masselter,
  • Sandra Eckert and
  • Thomas Speck

Beilstein J. Nanotechnol. 2011, 2, 173–185, doi:10.3762/bjnano.2.21

Graphical Abstract
  • of D. reflexa and F. insignis makes them promising biological concept generators with a high potential for biomimetic implementation, i.e., for the development of branched fibre-reinforced technical composites. A wide range of constructional elements with branched (sub-)structures can be optimised by
  • combined with high fracture toughness and very high strains at failure. Outlook: biomimetic potential and implementation These mechanical properties make the arborescent monocotyledons studied well suited as concept generators for technical implementations in branched fibre-reinforced compound structures
  • Fink) for competent help in microtome cutting and image processing. We gratefully acknowledge the German Research Foundation (DFG) for funding the project on branched biomimetic structures within the Priority Programme SPP 1420. We would also like to thank Markus Milwich from the ITV Denkendorf for his
PDF
Album
Supp Info
Video
Full Research Paper
Published 24 Mar 2011

Superhydrophobicity in perfection: the outstanding properties of the lotus leaf

  • Hans J. Ensikat,
  • Petra Ditsche-Kuru,
  • Christoph Neinhuis and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 152–161, doi:10.3762/bjnano.2.19

Graphical Abstract
  • h. Bhushan et al. (2010) [4] used the surface structures of the lotus leaf as model for the development of artificial biomimetic superhydrophobic structures. It became obvious that the outstanding and stable superhydrophobicity of the lotus leaf relies on the combination of optimized features such
PDF
Album
Video
Full Research Paper
Published 10 Mar 2011

Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention

  • Petra Ditsche-Kuru,
  • Erik S. Schneider,
  • Jan-Erik Melskotte,
  • Martin Brede,
  • Alfred Leder and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 137–144, doi:10.3762/bjnano.2.17

Graphical Abstract
  • biomimetic applications. Whereas the self-cleaning properties of superhydrophobic surfaces have been extensively investigated, their ability to retain an air film while submerged under water has not, in the past, received much attention. Nevertheless, air retaining surfaces are of great economic and
  • ecological interest because an air film can reduce friction of solid bodies sliding through the water. This opens perspectives for biomimetic applications such as low friction fluid transport or friction reduction on ship hulls. For such applications the durability of the air film is most important. While
  • extremely interesting as a biomimetic model for low friction fluid transport or drag reduction on ship hulls. Keywords: air film; aquatic insects; backswimmer; drag reduction; superhydrophobic surfaces; Introduction Superhydrophobic surfaces are of great economic interest because of their amazing
PDF
Album
Full Research Paper
Published 10 Mar 2011

Biomimetic materials

  • Wilhelm Barthlott and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2011, 2, 135–136, doi:10.3762/bjnano.2.16

Graphical Abstract
  • ) and radiation (e.g., sunlight). Boundary layers and, in particular, superhydrophobic surfaces and their interactions with the environment were thus the focus of this Thematic Series on Biomimetic materials. The most interesting phenomena happen on boundary layers: from the biosphere at the boundary
  • layer of our planet down to the surfaces of lotus leaves or Salvinia water ferns. And these are only two out of the 20 million species which all have secrets to be revealed: Biomimetic materials provide innovative solutions for the design of a new generation of bio inspired functional materials. Wilhelm
PDF
Editorial
Published 10 Mar 2011

Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

  • Bharat Bhushan

Beilstein J. Nanotechnol. 2011, 2, 66–84, doi:10.3762/bjnano.2.9

Graphical Abstract
  • created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting
  • of Biomimetic Structures for Fluid Drag Reduction In this section, we discuss drag reduction efficiency on biomimetic structured surfaces in channels. Experimental techniques For the measurement of pressure drop using water and air flows, an experimental flow channel with a rectangular channel was
  • for hydrophobic surfaces [21]. Fabrication and characterization of biomimetic structures A shark (Squalus acanthias, L. Squalidae) was used for creating a shark skin replica [21]. A shark is an aquatic animal, and its skin is permanently exposed to contamination from marine organisms, e.g., bacteria
PDF
Album
Review
Published 01 Feb 2011

Review of "Contact Mechanics and Friction: Physical Principles and Applications" by Valentin L. Popov

  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2011, 2, 57–58, doi:10.3762/bjnano.2.7

Graphical Abstract
  • the author and which repeatedly finds its way into numerous examples and problems is the tribology of biological objects. Since Popov knows biological and biomimetic systems from his own collaborative research with biologists [1][2][3], the book is not only an excellent starting point for engineers
PDF
Book Report
Published 25 Jan 2011
Other Beilstein-Institut Open Science Activities