Search results

Search for "growth rate" in Full Text gives 129 result(s) in Beilstein Journal of Nanotechnology.

Recrystallization of tubules from natural lotus (Nelumbo nucifera) wax on a Au(111) surface

  • Sujit Kumar Dora and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2011, 2, 261–267, doi:10.3762/bjnano.2.30

Graphical Abstract
  • . Comparing the growth of both tubules – 1 and 2 in Figure 1 (plotted in Figure 3a) – it is obvious that the growth rate of tubule 2 was lower and its final length was shorter, but both tubules reached their final length after the same time (about 3.5 hours). On the other hand, although radial growth follows
  • concentration of molecules in solution. These two observations combined suggest that both the growth rate as well as the saturation length depends on the availability of molecules on the surface, or more precisely, within the “capture zone” surrounding each tubule. Discussion As on many other substrates such as
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2011

Low-temperature solution growth of ZnO nanotube arrays

  • Ki-Woong Chae,
  • Qifeng Zhang,
  • Jeong Seog Kim,
  • Yoon-Ha Jeong and
  • Guozhong Cao

Beilstein J. Nanotechnol. 2010, 1, 128–134, doi:10.3762/bjnano.1.15

Graphical Abstract
  • to the substrate [29]. The proposed growth mechanism was based on the competition between growth rate and diffusion rate. However, our experiment cannot be explained by the gradient of ion concentration, such as Zn2+, since there was no concentration gradient in the solution. To understand the
  • grown at 60 °C suggest a relatively high polar surface energy, and as a result, the polar surface of ZnO was growing considerably. It is also clear that the reaction process for attachment of an atom to the interface was limited by the low temperature, so that the growth rate was slow. This is a reason
  • that the length of ZnO nanorods in Figure 6 was smaller than that of the nanorods grown at 90 °C. All these results suggest that (1) the surface energy difference of ZnO crystal between polar and non-polar face strongly depends on the pH of the reaction solution, and (2) the growth rate greatly depends
PDF
Album
Full Research Paper
Published 09 Dec 2010

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • evolution are given by with the solutions (Figure 6) The absolute concentration of the material absorbed by nucleation seeds is [S] = [A1]0 + [A2]0 − [B] − [A1] − [A2] and, therefore, the particle growth rate is given by v(t) = d[S]/dt. Further, the ratio x = A1/A2 of material absorbed at time t with the
PDF
Album
Review
Published 22 Nov 2010

Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

  • Sunandan Baruah,
  • Mohammad Abbas Mahmood,
  • Myo Tay Zar Myint,
  • Tanujjal Bora and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2010, 1, 14–20, doi:10.3762/bjnano.1.3

Graphical Abstract
  • to maintain the growth rate [20]. The substrate was then removed and washed several times with deionised water and then annealed at 250 °C for 1 h to remove any unreacted organic deposits. Microwave synthesis of ZnO nanorods on seeded substrates was carried out in a commercial microwave oven operated
PDF
Album
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities