Search results

Search for "surface chemistry" in Full Text gives 210 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synergic combination of the sol–gel method with dip coating for plasmonic devices

  • Cristiana Figus,
  • Maddalena Patrini,
  • Francesco Floris,
  • Lucia Fornasari,
  • Paola Pellacani,
  • Gerardo Marchesini,
  • Andrea Valsesia,
  • Flavia Artizzu,
  • Daniela Marongiu,
  • Michele Saba,
  • Franco Marabelli,
  • Andrea Mura,
  • Giovanni Bongiovanni and
  • Francesco Quochi

Beilstein J. Nanotechnol. 2015, 6, 500–507, doi:10.3762/bjnano.6.52

Graphical Abstract
  • serves to stabilize the sensing platform (as in the case of metal nanoparticles) and provides a specific affinity, resulting in improved selectivity [7][8][11][12]. Furthermore, the surface chemistry of thiol-based self-assembled monolayers has shown some limitations mainly related to their temporal
PDF
Album
Full Research Paper
Published 19 Feb 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL) electrospun nanofibrous scaffolds, to serve as coatings for cardiovascular implants and guide tissue regeneration. Oxygen plasma treatment was applied in order to modify the surface chemistry of the scaffold
  • applied power of the plasma was selected with respect to its effect on the structural and chemical composition of the scaffold. The untreated and plasma-treated nanofibrous scaffolds were evaluated in terms of surface topography, hydrophilicity, and surface chemistry in order to find the conditions that
  • the chain backbone of the polymer and the oxygen in the plasma, modify the surface chemistry, which results in higher numbers of oxygen-containing functional groups. Indeed, changes were observed by the XPS analysis in the intensity of the peaks of the untreated and plasma-treated electrospun PCL
PDF
Album
Full Research Paper
Published 22 Jan 2015

Tailoring the ligand shell for the control of cellular uptake and optical properties of nanocrystals

  • Johannes Ostermann,
  • Christian Schmidtke,
  • Christopher Wolter,
  • Jan-Philip Merkl,
  • Hauke Kloust and
  • Horst Weller

Beilstein J. Nanotechnol. 2015, 6, 232–242, doi:10.3762/bjnano.6.22

Graphical Abstract
  • encapsulation of inorganic nanoparticles has been shown to depend on several parameters, like the ratio between ligands and particles or the surface chemistry of the particles. In this review the discussion is limited to the encapsulation of highly fluorescent QDs in PI-b-PEG for the use in biological systems
  • to enhance the cellular uptake, due to the attractive interaction with the negatively charged cell membrane [35][36]. Therefore, control over the surface chemistry is crucial to study the nanocontainers behavior in vitro and in vivo. Figure 7 shows possible functionalization of PI-b-PEG prior to the
  • . Especially the easily adjustable properties like size, surface chemistry and the shielding of the nanoparticles within the resulting nanocontainer are of a high importance, since these parameters determine the interaction with biomaterial. Furthermore, it has been demonstrated that this diblock copolymer
PDF
Album
Supp Info
Review
Published 21 Jan 2015

X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

  • Toma Susi,
  • Thomas Pichler and
  • Paola Ayala

Beilstein J. Nanotechnol. 2015, 6, 177–192, doi:10.3762/bjnano.6.17

Graphical Abstract
  • , especially single-walled. We will likewise only briefly describe measurement-specific issues and extrinsic effects. Most importantly, we will only consider heteroatom doping in the lattice itself. This explicitly leaves outside our scope the many forms of functionalization and surface chemistry that have
PDF
Album
Review
Published 15 Jan 2015

The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Markus Heine,
  • Christian Waurisch,
  • Gordon M. Stachowski,
  • Stephen G. Hickey,
  • Alexander Eychmüller,
  • Jörg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 111–123, doi:10.3762/bjnano.6.11

Graphical Abstract
  • them water soluble. This resulted in similar nanoparticles (comparable size, surface chemistry and charge), despite the completely different core material. This was proven when the biodistribution was compared using fluorescent Qdots and intravital microscopy in mice or MRI measurements in mice and TEM
  • colocalize with LSECs as well as with KCs. To date, polymer-coated Qdots were not found in hepatocytes. Since the surface chemistry of the Qdots and SPIOs is identical when coated with the amphiphilic polymer, the cell distribution should be similar. Intracellular processing of Qdots Further insight into the
PDF
Album
Full Research Paper
Published 09 Jan 2015

The fate of a designed protein corona on nanoparticles in vitro and in vivo

  • Denise Bargheer,
  • Julius Nielsen,
  • Gabriella Gébel,
  • Markus Heine,
  • Sunhild C. Salmen,
  • Roland Stauber,
  • Horst Weller,
  • Joerg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 36–46, doi:10.3762/bjnano.6.5

Graphical Abstract
  • . In order to make full use of their potential it is essential to understand what controls at the molecular level recognition by cells, cell entering and intracellular processing. Physicochemical properties of NPs such as material composition, size, shape, charge, and surface chemistry, have been
PDF
Album
Full Research Paper
Published 06 Jan 2015

Poly(styrene)/oligo(fluorene)-intercalated fluoromica hybrids: synthesis, characterization and self-assembly

  • Giuseppe Leone,
  • Francesco Galeotti,
  • William Porzio,
  • Guido Scavia,
  • Luisa Barba,
  • Gianmichele Arrighetti,
  • Giovanni Ricci,
  • Chiara Botta and
  • Umberto Giovanella

Beilstein J. Nanotechnol. 2014, 5, 2450–2458, doi:10.3762/bjnano.5.254

Graphical Abstract
  • ) expandable interlayer space. The combination of these features permits the easy tuning of the interaction between the emitting centers by surface chemistry (i.e., ion-exchange and grafting reactions), and a sandwich-type intercalation. In particular, the intercalation of functional molecular species within
PDF
Album
Full Research Paper
Published 19 Dec 2014

Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

  • Cornelia Loos,
  • Tatiana Syrovets,
  • Anna Musyanovych,
  • Volker Mailänder,
  • Katharina Landfester,
  • G. Ulrich Nienhaus and
  • Thomas Simmet

Beilstein J. Nanotechnol. 2014, 5, 2403–2412, doi:10.3762/bjnano.5.250

Graphical Abstract
  • investigated. Due to their large surface to volume ratio, nanoparticles usually exhibit properties that differ from those of bulk materials. Particularly, the surface chemistry of the nanoparticles is crucial for their durability and solubility in biological media as well as for their biocompatibility and
  • living cells. The biological effects of nanoparticles depend not only on the particle material and their size, but to a great extent also on the surface chemistry of the particles. Surface functionalization of nanoparticles is crucial for their pharmacokinetics, biocompatibility, and tissue and cell
  • nanosized polystyrene particles may behave totally different from the bulk material. The surface chemistry plays a crucial role determining the impact of nanoparticles on diverse biological systems. The amino-functionalized particles can be seen as a model for cationic nanoparticles, and the carboxyl
PDF
Album
Review
Published 15 Dec 2014

Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects

  • Li Shang,
  • Karin Nienhaus,
  • Xiue Jiang,
  • Linxiao Yang,
  • Katharina Landfester,
  • Volker Mailänder,
  • Thomas Simmet and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2014, 5, 2388–2397, doi:10.3762/bjnano.5.248

Graphical Abstract
  • , the zeta potentials of all NPs in PBS were also measured. As expected from the surface chemistry of the NPs, the NH2-modified (NPS) and the CTMA-adsorbed NPs carried a positive surface charge; all other preparations had a negative surface charge. Cellular uptake of small (diameter 3–10 nm) NPs Figure
PDF
Album
Full Research Paper
Published 11 Dec 2014

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • sizes, and morphology. Aside from the properties of the single components added one by one to form the properties of the heterostructure, several new properties emerge from the morphology and surface chemistry of the heterodimers [35]: (i) multifunctionality based on the different surface chemistry of
  • particles are diluted in biological media [102]. On the contrary, the encapsulation of isotropic nanoparticles in a silica shell was established, which is advantageous because of the extraordinary stability of silica and its well-known surface chemistry that allows further functionalization. Furthermore
  • stability in aqueous media is of particular importance for biomedical applications, the extraordinary stability of silica encapsulated nanoparticles and the well-known surface chemistry of silica were transferred to Janus particles, whereby the Janus character was retained due to the distinct chemical
PDF
Album
Review
Published 05 Dec 2014

Electrical contacts to individual SWCNTs: A review

  • Wei Liu,
  • Christofer Hierold and
  • Miroslav Haluska

Beilstein J. Nanotechnol. 2014, 5, 2202–2215, doi:10.3762/bjnano.5.229

Graphical Abstract
  • ion exchange surface chemistry approach. Tens of thousands of CNFETs were fabricated on the chip level with 78% yield. Chikkadi et al. [89] introduced a photolithography-based scalable fabrication process which provides a good platform for investigating the uniformity of CNFET performance on a large
PDF
Album
Review
Published 21 Nov 2014

Advances in NO2 sensing with individual single-walled carbon nanotube transistors

  • Kiran Chikkadi,
  • Matthias Muoth,
  • Cosmin Roman,
  • Miroslav Haluska and
  • Christofer Hierold

Beilstein J. Nanotechnol. 2014, 5, 2179–2191, doi:10.3762/bjnano.5.227

Graphical Abstract
  • ] discuss the effect of water adsorption on substrate-bound carbon nanotube devices, lying on SiO2 substrates (Figure 5a and Figure 5b). Due to the hydrophilic surface chemistry of SiO2, a thin water layer is present close to the nanotube. These water molecules then act as charge traps that screen the gate
PDF
Album
Review
Published 20 Nov 2014

Cathode lens spectromicroscopy: methodology and applications

  • T. O. Menteş,
  • G. Zamborlini,
  • A. Sala and
  • A. Locatelli

Beilstein J. Nanotechnol. 2014, 5, 1873–1886, doi:10.3762/bjnano.5.198

Graphical Abstract
  • available in most laboratories presents a limitation, as the information on surface chemistry is available in core-level electronic transitions, which are only accessible by using higher photon energies from few tens of electronvolts to above 1 keV. By providing tunable high-brightness X-ray beams
PDF
Album
Review
Published 27 Oct 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • include drug delivery [65][66], implants coating [67] and bioimaging [68]. Similarly to the use of CNTs, the first consideration in biological applications is the biocompatibility of NDs. Diamond, in its bulk form, is chemically inert. However, because surface chemistry is predominant at the nanoscale
  • were incubated with oxidised NDs, suggesting it was a specific consequence of the surface chemistry of NDs. Nonetheless, Xing and co-workers noted that NDs and oxidised NDs induce overall less DNA damage than that caused by MWCNTs. The investigation of the cellular uptake mechanisms of NDs is also a
PDF
Album
Correction
Review
Published 23 Oct 2014

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • ratio of the structures becomes large [14]. Many important questions related to impurities and surface chemistry have to be answered by using quantum-chemical models. With the development of efficient linear-scaling density functional methods along with the steady drop of CPU-time costs, we are now able
PDF
Album
Review
Published 16 Oct 2014

Nanocrystalline ceria coatings on solid oxide fuel cell anodes: the role of organic surfactant pretreatments on coating microstructures and sulfur tolerance

  • Chieh-Chun Wu,
  • Ling Tang and
  • Mark R. De Guire

Beilstein J. Nanotechnol. 2014, 5, 1712–1724, doi:10.3762/bjnano.5.181

Graphical Abstract
  • sulfur tolerance to the anode. Aspects of the sulfonate treatment, particularly the oxone oxidation step, may have adversely affected the anode surface chemistry. (As explained in the Experimental section, we observed chemical damage to the cathode if the oxone solution contacted it, and subsequently
PDF
Album
Full Research Paper
Published 06 Oct 2014

Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks

  • Christoph Nick,
  • Sandeep Yadav,
  • Ravi Joshi,
  • Christiane Thielemann and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2014, 5, 1575–1579, doi:10.3762/bjnano.5.169

Graphical Abstract
  • reported ability to tailor the hydrophilicity and hydrophobicity of such 3D aligned CNT structures over a wide range from superhydrophilic to superhydrophobic [29] the directional cell growth on such structures should be possible and would thus allow understanding these observed preferences from a surface
  • chemistry viewpoint in future work. In conclusion, pristine randomly and vertically aligned CNTs architectures were studied with respect their use as substrates for neuron cell growth. Both CNT architectures are unique hierarchical structures to direct and control neural cell growth. To the best of our
PDF
Album
Supp Info
Video
Full Research Paper
Published 17 Sep 2014

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • addition to ion release, the surface chemistry of the nanoparticle itself may also be directly associated with nanotoxicological effects, e.g., the formation of reactive oxygen species [33]. Here, surface atoms may trigger chemical reactions with biomolecules which are possibly harmful to the organism
PDF
Album
Video
Review
Published 12 Sep 2014

Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study

  • Nicolas Thewes,
  • Peter Loskill,
  • Philipp Jung,
  • Henrik Peisker,
  • Markus Bischoff,
  • Mathias Herrmann and
  • Karin Jacobs

Beilstein J. Nanotechnol. 2014, 5, 1501–1512, doi:10.3762/bjnano.5.163

Graphical Abstract
  • bacterium, the surrounding medium, the surface chemistry, and the material composition reflecting the influence of the main interacting forces [12][13]: van der Waals forces, hydrophobic interaction and electrostatic forces. In addition, specific interactions amplify bacterial adhesion whenever
PDF
Album
Full Research Paper
Published 10 Sep 2014

In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

  • Moritz Nazarenus,
  • Qian Zhang,
  • Mahmoud G. Soliman,
  • Pablo del Pino,
  • Beatriz Pelaz,
  • Susana Carregal-Romero,
  • Joanna Rejman,
  • Barbara Rothen-Rutishauser,
  • Martin J. D. Clift,
  • Reinhard Zellner,
  • G. Ulrich Nienhaus,
  • James B. Delehanty,
  • Igor L. Medintz and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1477–1490, doi:10.3762/bjnano.5.161

Graphical Abstract
  • original properties of the underlying NPs determine interactions with the cells [97]. In general, adsorbed proteins "smear out" differences in the surface chemistry between different NPs. Thus, typically two different types of NPs show more pronounced differences in their interaction with cells in case
  • . Scheme depicting the different mechanisms of cellular endocytosis. Reproduced with permission from [41]. Copyright (2011) Elsevier. Fluorescence microscopy image showing the granular structure of internalized NPs inside A549 lung cancer cells (two types of iron oxide NPs with different surface chemistry
PDF
Album
Review
Published 09 Sep 2014

The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

  • Dominic Docter,
  • Christoph Bantz,
  • Dana Westmeier,
  • Hajo J. Galla,
  • Qiangbin Wang,
  • James C. Kirkpatrick,
  • Peter Nielsen,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2014, 5, 1380–1392, doi:10.3762/bjnano.5.151

Graphical Abstract
  • unique properties such as the variety of surface modifications and their convenient synthesis [9][10][15]. Though, the biological influence of such type of NP and its correlation with the physico-chemical properties of the nanomaterial, such as size, density, and surface chemistry are still not
PDF
Album
Full Research Paper
Published 27 Aug 2014

Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

  • Fabian Herzog,
  • Kateryna Loza,
  • Sandor Balog,
  • Martin J. D. Clift,
  • Matthias Epple,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1357–1370, doi:10.3762/bjnano.5.149

Graphical Abstract
  • transport, fate and possible toxicity of Ag [28]. Recent studies highlight the contradicting elements that may contribute to the biological impact of Ag NPs such as shape and size [29][30], surface chemistry [31][32] or a combined mechanism of particle and ions [33]. As the literature is contradicting and
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2014

Surface topography and contact mechanics of dry and wet human skin

  • Alexander E. Kovalev,
  • Kirstin Dening,
  • Bo N. J. Persson and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1341–1348, doi:10.3762/bjnano.5.147

Graphical Abstract
  • skin and (121.4 ± 1.6)° (n = 9) on wet skin. The larger contact angle on wet skin could reflect either a change in the skin surface chemistry, or more likely may be due to the increase in the surface roughness of wet skin. The receding contact angle was not measured but it would be smaller than the
PDF
Album
Full Research Paper
Published 22 Aug 2014

Organic and inorganic–organic thin film structures by molecular layer deposition: A review

  • Pia Sundberg and
  • Maarit Karppinen

Beilstein J. Nanotechnol. 2014, 5, 1104–1136, doi:10.3762/bjnano.5.123

Graphical Abstract
  • featuring purely organic thin films is still quite limited. Nevertheless some reviews concerning MLD-based thin films have been published in the past: George et al. [24] discuss the surface chemistry of MLD grown materials, addressing the problems which arise when using organic precursors in the growth
PDF
Album
Review
Published 22 Jul 2014

Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer

  • Amanee D Salaam,
  • Patrick Hwang,
  • Roberus McIntosh,
  • Hadiyah N Green,
  • Ho-Wook Jun and
  • Derrick Dean

Beilstein J. Nanotechnol. 2014, 5, 937–945, doi:10.3762/bjnano.5.107

Graphical Abstract
  • , delivery due to size, and bioavailability. In contrast to the aforementioned nanoparticle systems, nanodiamond particles (ND) possess advantageous properties such as rich surface chemistry for conjugating targeting molecules, high surface area for loading drugs, and the ability to act as transmembrane
PDF
Album
Full Research Paper
Published 01 Jul 2014
Other Beilstein-Institut Open Science Activities