Search results

Search for "biomolecules" in Full Text gives 213 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study

  • Pauline Maffre,
  • Stefan Brandholt,
  • Karin Nienhaus,
  • Li Shang,
  • Wolfgang J. Parak and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2014, 5, 2036–2047, doi:10.3762/bjnano.5.212

Graphical Abstract
  • contact with extracellular fluids such as blood plasma or lung epithelial lining fluid, which contain a huge variety of dissolved biomolecules including lipids and proteins. These can adsorb onto the NP surface and completely enshroud the NP, forming the so-called “protein corona” [11][12][13][14][15
  • approaches involve a separation of NPs with adsorbed proteins and proteins free in solution, such as (ultra)centrifugation [36] or size exclusion chromatography [11]. Such approaches will inevitably modify the composition of only loosely adsorbed biomolecules in the corona because these will immediately
PDF
Album
Full Research Paper
Published 07 Nov 2014
Graphical Abstract
  • Anne Jantschke Katrin Spinde Eike Brunner TU Dresden, Fachrichtung Chemie und Lebensmittelchemie, Bioanalytische Chemie, 01062 Dresden, Germany 10.3762/bjnano.5.211 Abstract The discovery of long-chain polyamines as biomolecules that are tightly associated to biosilica in diatom cell walls has
  • silica. Keywords: phosphate; self-assembly; silica–polyamine interactions; silicomolybdic acid test; 29Si NMR; turbidity measurements; Introduction Long-chain polyamines (LCPAs) were previously found biomolecules that are tightly associated to the biosilica of various diatom species [1][2][3][4][5
PDF
Album
Full Research Paper
Published 06 Nov 2014

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • with biomolecules was reported by the groups of Plonska-Brzezinska, Simionescu and Echegoyen in 2010 [36]. In the first step, small CNOs (6–8 shells) were oxidized by using conc. H2SO4/HNO3 and subsequently functionalized with PEG to study their cytotoxicity on rat dermal fibroblasts. The result was
  • amidation reaction. In another amidation step, some of the unreacted carboxylic acid groups on the CNO surface were functionalized with biotin, which allows the attachment of biomolecules such as avidin. This first covalent functionalization of CNOs with biomolecules, promoted by biotin–avidin interactions
  • imaging that the CNOs were deposited in the lysosomes of the cells. Biological sensing: In the aforementioned study of Luszczyn et al. [36], CNOs were covalently functionalized with biomolecules and studied for the first time as biosensors by using avitin–biotin interactions. The CNO served as linking
PDF
Album
Review
Published 04 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • model is discussed in detail in [20]. It mainly involves an oxidative dissolution of silver nanoparticles, typically by dissolved oxygen, and a passivation of the surface by chloride and sulfur-containing biomolecules. So far, there are no quantitative data on the dissolution of silver nanoparticles in
  • complex biological media. Considering the available literature data (see [1][12][20][31][42][43]), it can be assumed that silver ions are complexed by biomolecules and that silver nanoparticles are passivated in the presence of sulfide, sulfur-containing components and chloride. This passivation slows
PDF
Album
Review
Published 03 Nov 2014

Real-time monitoring of calcium carbonate and cationic peptide deposition on carboxylate-SAM using a microfluidic SAW biosensor

  • Anna Pohl and
  • Ingrid M. Weiss

Beilstein J. Nanotechnol. 2014, 5, 1823–1835, doi:10.3762/bjnano.5.193

Graphical Abstract
  • , especially from native shell extracts [40], but even from recombinant sources [41][42]. The aim of the present study was to evaluate the suitability of microfluidic SAW biosensor systems with respect to elucidating the interaction between small biomolecules and calcium carbonate, one of the most common
  • organic biomolecules and calcium carbonate in the presence of carboxylate surfaces could be reproducibly quantified in real-time assays. Here, we report a case study with calcium carbonate, both in pure aqueous systems and in the presence of citric acid. We also investigated the two cationic peptides ES9
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2014

The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

  • Christoph Bantz,
  • Olga Koshkina,
  • Thomas Lang,
  • Hans-Joachim Galla,
  • C. James Kirkpatrick,
  • Roland H. Stauber and
  • Michael Maskos

Beilstein J. Nanotechnol. 2014, 5, 1774–1786, doi:10.3762/bjnano.5.188

Graphical Abstract
  • fact that the silica particles are sufficiently stabilized in the absence of biomolecules, these proteins induce the agglomeration of silica NPs yielding an average hydrodynamic radius of 91 nm for the agglomerates. To derive agglomerate sizes in the cases in which proteins were present, DLS data were
PDF
Album
Full Research Paper
Published 15 Oct 2014

Non-covalent and reversible functionalization of carbon nanotubes

  • Antonello Di Crescenzo,
  • Valeria Ettorre and
  • Antonella Fontana

Beilstein J. Nanotechnol. 2014, 5, 1675–1690, doi:10.3762/bjnano.5.178

Graphical Abstract
  • , temperature, light and redox conditions. Interestingly, many biomolecules have this capability, providing a viable alternative when reversibility of these processes is preferred. Solvent variation. The first and easiest method to remove the non-covalent functionalization is to change the solvent system [82
PDF
Album
Review
Published 30 Sep 2014

Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions

  • Anastasios Stergiou,
  • Georgia Pagona and
  • Nikos Tagmatarchis

Beilstein J. Nanotechnol. 2014, 5, 1580–1589, doi:10.3762/bjnano.5.170

Graphical Abstract
  • , although graphene-based biomaterials are out of the scope of this mini-review, GO has been covalently functionalized with peptides, antibodies and other biomolecules for applications in diagnostics, novel therapeutic approaches and near infrared (NIR) photo-thermal therapies [53]. A representative work
PDF
Album
Review
Published 18 Sep 2014

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • particle properties, e.g., by inducing aggregation processes in the presence of biomolecules [20], and hence complicating bio-response studies. The removal of surfactants or residual ligands from colloidal nanoparticles is possible, e.g., by centrifugation [21], diafiltration [22] or tangential-flow
  • formation of ZnO-SMS [71]. However, the reader should note that in case of ZnO, biocompatibility of these SMS may be further compromised due to the possibility of elevated Zn2+ ion release upon laser irradiation. Zn2+ ions are known to have adverse effects on biological systems by chelating biomolecules and
  • control. Several groups could actually demonstrate that the presence of organic ligands during the PLAL-process (in situ conjugation) may be used for size control, predominantly yielding reduced particle sizes and narrowed size distributions [84][85]. This was also shown for biomolecules like
PDF
Album
Video
Review
Published 12 Sep 2014

A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane

  • Bashiru Kayode Sodipo and
  • Azlan Abdul Aziz

Beilstein J. Nanotechnol. 2014, 5, 1472–1476, doi:10.3762/bjnano.5.160

Graphical Abstract
  • cause them to agglomerate in ionic solution [1]. In addition, SPION exhibit a lack of affinity for biomolecules. One of the methods used to minimize these effects is through surface modification or functionalization of the SPION. Organic compounds, such as (3-aminopropyl)triethoxysilane (APTES), are
PDF
Album
Supp Info
Letter
Published 08 Sep 2014

Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

  • Dickson Joseph,
  • Nisha Tyagi,
  • Christian Geckeler and
  • Kurt E.Geckeler

Beilstein J. Nanotechnol. 2014, 5, 1452–1462, doi:10.3762/bjnano.5.158

Graphical Abstract
  • methodologies with biological molecules as the templates. Towards this purpose, biomolecules such as proteins/enzymes and DNA possess significant advantage as both reducing and capping agents on gold, which is the most extensively studied system in this category [11][12]. Gold nanoparticles are known for their
  • ]. Biomolecules have been reported to interact with gold salts and reduce them into metallic gold, acting both as a reductant and stabilizer [12][17][18][19][20][21]. Proteins, such as bovine serum albumin, silk fibroin protein, chicken egg white lysozyme, α-amylase, green fluorescent protein and apoferritin have
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2014

Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

  • Ulrich C. Fischer,
  • Carsten Hentschel,
  • Florian Fontein,
  • Linda Stegemann,
  • Christiane Hoeppener,
  • Harald Fuchs and
  • Stefanie Hoeppener

Beilstein J. Nanotechnol. 2014, 5, 1441–1449, doi:10.3762/bjnano.5.156

Graphical Abstract
  • reactive groups. Hence, they form templates for the spatially defined fabrication of functionalities for the attachment of, e.g., biomolecules [1][2][3], polymers [4][5][6], or other organic or inorganic nanoparticles [7][8] with nanometer precision. Potential applications of such chemically structured
PDF
Album
Full Research Paper
Published 03 Sep 2014

The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

  • Dominic Docter,
  • Christoph Bantz,
  • Dana Westmeier,
  • Hajo J. Galla,
  • Qiangbin Wang,
  • James C. Kirkpatrick,
  • Peter Nielsen,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2014, 5, 1380–1392, doi:10.3762/bjnano.5.151

Graphical Abstract
  • , the GI tract also contains additional biobarriers, such as mucous matrices and other biomolecules. Thus, future studies need to consider experimentally this layer of additional complexity to resolve the mechanisms and (patho)biological effects of silica nanoparticles in vitro and in vivo. Generally
PDF
Album
Full Research Paper
Published 27 Aug 2014

Purification of ethanol for highly sensitive self-assembly experiments

  • Kathrin Barbe,
  • Martin Kind,
  • Christian Pfeiffer and
  • Andreas Terfort

Beilstein J. Nanotechnol. 2014, 5, 1254–1260, doi:10.3762/bjnano.5.139

Graphical Abstract
  • modification [4], e.g., as etch resist for microfabrication [5][6], as support for molecular systems like metal-organic frameworks or biomolecules [7], or for the tuning of electronic properties of metal surfaces [8][9][10][11][12], to mention just a few. One reason for the popularity of SAMs is their ease of
PDF
Album
Supp Info
Full Research Paper
Published 12 Aug 2014

Model systems for studying cell adhesion and biomimetic actin networks

  • Dorothea Brüggemann,
  • Johannes P. Frohnmayer and
  • Joachim P. Spatz

Beilstein J. Nanotechnol. 2014, 5, 1193–1202, doi:10.3762/bjnano.5.131

Graphical Abstract
  • membrane by biotin-streptavidin linkages. This anchorage resulted in the formation of a cortex-like actin structure within the GUVs. However, the GUVs in this study were contaminated by agarose, which adhered to the lipid membrane. A very similar approach for growing GUVs with embedded biomolecules was
PDF
Album
Review
Published 01 Aug 2014

Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

  • Alina Maria Holban,
  • Valentina Grumezescu,
  • Alexandru Mihai Grumezescu,
  • Bogdan Ştefan Vasile,
  • Roxana Truşcă,
  • Rodica Cristescu,
  • Gabriel Socol and
  • Florin Iordache

Beilstein J. Nanotechnol. 2014, 5, 872–880, doi:10.3762/bjnano.5.99

Graphical Abstract
  • materials [37], metaloporphyrines [38] and for biomolecules, e.g., poly(lactic acid) (PLA) [39], poly(lactic-co-glycolic acid) PLGA [40], polyvinyl alcohol (PVA) [41] and fibrinogen [42]. Our recent reports have highlighted the capability of the laser processing technique to prepare thin coatings based on
PDF
Album
Full Research Paper
Published 18 Jun 2014

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers

  • Tianxun Gong,
  • Douglas Goh,
  • Malini Olivo and
  • Ken-Tye Yong

Beilstein J. Nanotechnol. 2014, 5, 546–553, doi:10.3762/bjnano.5.64

Graphical Abstract
  • the encapsulated AuNRs synthesized in this study. The bright red and orange scattered spots located within the cells suggest that the AuNRs were internalized into the cells by non-specific cellular uptake since no biomolecules were attached to our gold formulations. Huang et al. performed a similar
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014

Exploring the complex mechanical properties of xanthan scaffolds by AFM-based force spectroscopy

  • Hao Liang,
  • Guanghong Zeng,
  • Yinli Li,
  • Shuai Zhang,
  • Huiling Zhao,
  • Lijun Guo,
  • Bo Liu and
  • Mingdong Dong

Beilstein J. Nanotechnol. 2014, 5, 365–373, doi:10.3762/bjnano.5.42

Graphical Abstract
  • strength, adhesive properties, and elastic modulus [27][28][29], have been investigated by FS. In the mechanical measurements of biomolecules, the unfolding of the regular secondary structure of proteins was characterized by periodical peaks on the force–distance curves, which allowed for the
PDF
Album
Full Research Paper
Published 27 Mar 2014

Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating

  • Tingjun Lei,
  • Alicia Fernandez-Fernandez,
  • Romila Manchanda,
  • Yen-Chih Huang and
  • Anthony J. McGoron

Beilstein J. Nanotechnol. 2014, 5, 313–322, doi:10.3762/bjnano.5.35

Graphical Abstract
  • and protect their cargo from degradation, including drugs and other types of biomolecules [1][2]. NPs have also proven to be useful in overcoming multidrug resistance (MDR) by preventing the direct interaction of drug exporter pumps with their substrates once encapsulated in NPs [3]. An additional
PDF
Album
Supp Info
Full Research Paper
Published 18 Mar 2014

Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

  • Matthias Wasem,
  • Joachim Köser,
  • Sylvia Hess,
  • Enrico Gnecco and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2014, 5, 36–43, doi:10.3762/bjnano.5.4

Graphical Abstract
  • polymers or biomolecules. Compared to contact mode AFM the destructive lateral forces are virtually eliminated in tapping mode as the probing tip has a much lower contact time while mapping the surface, which results in a much more gentle sensing of the investigated surface [1][2]. AM-AFM has the ability
PDF
Album
Full Research Paper
Published 13 Jan 2014

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • present polymer-based functionalization and the grafting of biomolecules (DNA molecules, glucose molecules, proteins, etc.) on VA-CNTs for biological applications. Finally, we present some less-common functionalization methods. 3.1 Functional groups Fluorination of VA-CNTs: During the past decade
PDF
Album
Review
Published 22 Feb 2013

Towards 4-dimensional atomic force spectroscopy using the spectral inversion method

  • Jeffrey C. Williams and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2013, 4, 87–93, doi:10.3762/bjnano.4.10

Graphical Abstract
  • and biological materials, as well as in the study of other rate-dependent phenomena, such as binding or folding/unfolding events in complex biomolecules. Methods The details of the spectral inversion method using the torsional harmonic cantilever have been described in detail elsewhere [8][11], so
PDF
Album
Full Research Paper
Published 07 Feb 2013

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • treatment, nanoparticles are either functionalized with biomolecules that recognize and attach to the cancer cells, [6][7] or in the case of iron-oxide nanoparticles, the nanoparticles are directed by an external magnetic field [9]. The cells are destroyed by drugs that coat the nanoparticles or by
PDF
Album
Full Research Paper
Published 15 Nov 2012

Dimer/tetramer motifs determine amphiphilic hydrazine fibril structures on graphite

  • Loji K. Thomas,
  • Nadine Diek,
  • Uwe Beginn and
  • Michael Reichling

Beilstein J. Nanotechnol. 2012, 3, 658–666, doi:10.3762/bjnano.3.75

Graphical Abstract
  • nanowires [30], and DNA/biomolecules [31][32]. With regard to STM imaging of 1-D structures on HOPG, one should be wary of innate graphitic artefacts and 1-D fibre-like structures present on bare HOPG surface, mostly occurring as a result of cleaving [25][26][27]. Although, graphitic artefacts may show
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2012

FTIR nanobiosensors for Escherichia coli detection

  • Stefania Mura,
  • Gianfranco Greppi,
  • Maria Laura Marongiu,
  • Pier Paolo Roggero,
  • Sandeep P. Ravindranath,
  • Lisa J. Mauer,
  • Nicoletta Schibeci,
  • Francesco Perria,
  • Massimo Piccinini,
  • Plinio Innocenzi and
  • Joseph Irudayaraj

Beilstein J. Nanotechnol. 2012, 3, 485–492, doi:10.3762/bjnano.3.55

Graphical Abstract
  • traditional devices into biosensing systems with high sensitivity. In particular, mesoporous titania thin films synthesized with the sol–gel method, were used to immobilize biomolecules (antibodies and pathogens) thanks to the high surface area due to their nano-organization, visible in a AFM image (Figure 1
  • ). This was possible due to a high control of the gelation process on the films and subsequent thermal treatments that avoided the denaturation of biomolecules in environments that have a high alcohol concentration and extreme pH values, hence obtaining ordered and reproducible substrates. With this
PDF
Album
Full Research Paper
Published 03 Jul 2012
Other Beilstein-Institut Open Science Activities