Search results

Search for "carbon" in Full Text gives 1237 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • planned to reach down to 50 eV, which would be correspondingly surface sensitive, in the near future. In the two above cases, contaminations in the experimental chamber play an important role during the sputtering processes. Typical contaminations are (in the order of frequency) water, nitrogen, carbon
  • and carbonated components that can be found in the atmosphere [22][23][24], and residuals from past experiments in the chamber, which can include silicon, carbon, or any type of particles that were sputtered previously and adsorbed on the walls of the sample chamber [24][25]. The work in this paper
  • renewal of the water layer. Future simulations could include other types of contaminants, such as nitrogen or carbon-containing impurities that are very often found in instrument chambers, and the renewal of the contamination layer during the sputtering process. Representations of the contaminated sample
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • bottle was sealed and placed in a shaking mixer and shaken for 3 h. Next, ZnO nanoparticles (Shanghai Keyan Industrial Co., Ltd., particle size 3 ± 5 nm, content ≥99.8%) and GR filler (Shenzhen Turing Evolution Technology Co., Ltd., carbon content 98%, average diameter/thickness ratio = 9500) were added
PDF
Album
Full Research Paper
Published 31 Jul 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • formation of cerium coordination complexes on the ceria nanoparticle surface that inhibit agglomeration. Key functional groups of carboxylic acids that prevented nanoceria agglomeration were identified. A long carbon chain backbone containing a carboxylic acid group geminal to a hydroxy group in addition to
  • agglomerates on the edges of the lacey carbon film are nanoceria. The presence of β-hydroxybutyric acid appeared to reduce the overall number of nanoceria particles from week 0 through week 2, similar to citric acid. However, by week 4, large micrometer-sized agglomerates were detected, made up of hundreds of
  • isocitric acid all contain at least one more carboxylic acid group (citric and isocitric acid contain two additional groups). The same is true for tartaric, tartronic, and dihydroxymalonic acid; however, the carbon chain is shorter for these molecules and does not contain any CH2 groups, which may prevent
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • performance of the electrode (432.3 mAh·g−1 at a specific current of 5000 mA·g−1) are attributed to the enhancement in distribution and chemical contact between Ge nanoparticles and the biomass-based carbon matrix. A comparison with other synthesis routes has been conducted to demonstrate the effectiveness of
  • performance of Ge-based anodes, a carbon matrix is the most popular choice to disperse nanoparticles, avoiding their aggregation and reducing the internal stress induced by volume variation, because of its flexible structure and high conductivity [30][31][32]. In our recent study, the combination of Ge
  • nanoparticles and a carbon matrix using a hydrothermal route has been reported, and the enhancement in the electrochemical performance of Ge@C electrodes was demonstrated [33]. In this work, a one-pot synthesis route has been followed to prepare a Ge@C composite using an in situ magnesiothermic reduction of
PDF
Album
Full Research Paper
Published 26 Jun 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • Malaysia, 81310 Johor Bahru, Malaysia Advanced Membrane Technology Research Center, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia National Research and Innovation Agency, Indonesia 10.3762/bjnano.14.61 Abstract The growth of carbon nanotubes (CNTs) in a flame requires conditions that are
  • CNT functionalization for energy storage, nanosensor, and nanocomposite applications, where diameter and crystallinity are influential properties that govern the overall performance of the components. Keywords: carbon nanotubes; crystallinity; flame synthesis; morphology; one-dimensional flame
  • ; synthesis control; Introduction Carbon nanotubes have been a research topic for a few decades since their discovery by Iijima in 1991 [1]. The CNT structure enables remarkable mechanical, electrical, and thermal properties. Studies of CNT syntheses using different methods yielding nanotubes with varying
PDF
Album
Full Research Paper
Published 21 Jun 2023

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • fuels generates harmful emissions to the environment, such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), nitric oxide and nitrogen dioxide (together termed NOx), and fluorinated gases (e.g., hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride) which are currently considered
  • appropriate for treating pollutants, even in atmospheric conditions [9][10][11]. Moreover, the photocatalysis method is also a potential solution for environmental remediation, carbon emission reduction, and renewable energy production [12][13][14]. Combining photocatalysts and sunlight irradiation is a
  • development of advanced materials based on semiconductors (i.e., carbon-modified hexagonal boron nitride (MBN), MgO@g-C3N4, and TiO2@MWCNTs) have indicated a highly efficient photocatalytic performance for phenol removal using a low-power visible LED light source. For NO degradation, a visible light source
PDF
Album
Editorial
Published 13 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • diffraction were used to characterize the morphological and structural properties of GQDs. An electrochemical sensor was developed by drop casting GQDs on a glassy carbon electrode (GCE). The sensor detects the organophosphate pesticide malathion in a selective and sensitive manner. Using cyclic voltammetry
  • -area to volume ratio to provide enhanced analyte interaction with the sensing surface [14]. Carbon-based nanomaterials and nanocomposites are being investigated for the electrochemical detection of a variety of pesticides, including organophosphates, organochlorines, and carbamates [15][16][17]. The
  • lowers the detection limit [18]. In an effort to combine the properties of carbon dots and graphene, graphene quantum dots (GQDs) with a size smaller than 100 nm and only a few layers of graphene (3 to 10 layers) have been developed as a new class of carbon nanomaterials [19]. Scientists have explored
PDF
Album
Full Research Paper
Published 09 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • researchers have published a number of nanomaterial-based (quantum dots, carbon-based, and metal-based) sensors for the detection of various analytes [1][2][7][9][27][28][29][30][31][32][33][34][35][36][37][38]. A review paper that offers a comprehensive analysis of current developments based on metal-organic
  • , which lowers their electrochemical detection performance [64]. Researchers have focused on various research efforts to improve the conductivity and amplify the electrical signals of MOFs by combining them with other highly conductive materials (such as carbon materials, metal nanoparticles, or metal
  • oxides) [63][64][65][66][67][68][69]. This is motivated by their large surface area, which can facilitate the loading of nanoparticles. Additionally, MOFs have been converted into their electrochemically active derivatives, such as mesoporous carbon composites and porous metal oxides, to achieve an
PDF
Album
Review
Published 01 Jun 2023

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • described as: The raw TiO2 powders contain some carbon (from the decomposition of the ethylene sensitizer) and chlorine impurities, whose amount it is greatly diminished by calcination in air at 450 °C for 5 h. To certify this, a composition investigation by energy-dispersive X-ray spectroscopy (EDS) has
  • spectral alignment of the binding energy (BE) scale was referenced to adventitious carbon at 284.8 eV [40][41]. Figure 4a shows the full survey scans of TO-250-a, TO-850-b, and commercial TiO2 (Degussa P25) samples, indicating the presence of the expected elements Ti, O, and C. The high-resolution XPS
  • spectra of the C 1s, O 1s, and Ti 2p regions of TO-250-a, TO-850-b, and P25 are indicated in Figure 4b–d. The carbon region consists of three singlets with maxima located at 284.8, 286.1, and 289 eV (see Figure 4b). The highest peak located at 284.8 eV originates from the C=C bond, followed by the
PDF
Album
Full Research Paper
Published 22 May 2023

Transferability of interatomic potentials for silicene

  • Marcin Maździarz

Beilstein J. Nanotechnol. 2023, 14, 574–585, doi:10.3762/bjnano.14.48

Graphical Abstract
  • graphene has also sparked interest in other non-carbon 2D materials [1][2]. One of such materials is 2D silicon, called silicene [3][4]. Using first-principles methods with current computer resources enables us to model structures up to about a few hundred atoms. For larger systems, approximate methods are
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • that crystalline ZnO particles adhere to the surface of amorphous carbon, and the ZnO content increases as a function of a dosage of ZnNO3·6H2O. The as-prepared SiC@C-ZnO hybrids exhibit effective electromagnetic absorption, which is related to a synergy effect of different dielectric loss processes
  • mm). The excellent properties of the materials suggest great prospect as electromagnetic absorbers. Keywords: carbon; dielectric; electromagnetic absorption; SiC nanowires; ZnO; Introduction With increasing functionality of electronic devices, the widening of the working frequency bands, and the
  • ]. Nevertheless, the EM absorption of most SiC-based absorbers with heterostructures is far from satisfactory [21][22][23]. In our previous work, SiC@C nanowires have been successfully obtained by surface carbonization of SiC nanowires [24]. Carbon materials are prone to bond with other dielectric or magnetic
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • Federal do ABC, Santo André - CEP 09210-580, Brazil 10.3762/bjnano.14.44 Abstract In this work, a conductive ink based on microfibrillated cellulose (MFC) and multiwalled carbon nanotubes (MWCNTs) was used to produce transducers for rapid liquid identification. The transducers are simple resistive
  • devices that can be easily fabricated by scalable printing techniques. We monitored the electrical response due to the interaction between a given liquid with the carbon nanotube–cellulose film over time. Using principal component analysis of the electrical response, we were able to extract robust data to
  • rapid, inexpensive, and robust liquid analysis and identification. Keywords: carbon nanotube; electronic tongue; fibrillated cellulose; liquid sensor; Introduction The development of a new generation of smart sensors that allow for the monitoring of industrial processes in real time and for wearable
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • particular the absence of graphite or nanoscale graphite. It is important to recall that graphene has been defined as a “single layer of carbon atoms with each atom bound to three neighbours in a honeycomb structure” with materials with more than one layer defined as “few-layer graphene” or “graphene
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • . Photothermal materials (PTMs) applied to SSG include metallic materials, semiconductors, carbon-based materials, and conjugated organic materials [1][2][3][4]. Compared to metallic and inorganic PTMs, π-conjugated organic PTMs have advantages, such as a greater light absorption, easier synthesis, and
  • can be predicted by density functional theory (DFT) calculations of the conjugated structures. This is an advantage over other carbon materials, even if they are of the same chemical composition [18][19][20][21][22]. We review the recent progress in the material development of conjugated solar
PDF
Album
Review
Published 04 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • conventional analytical methods. It is also possible to reveal how functional sites such as catalysts are incorporated into the immobilization process. For example, an atomistic understanding of the structure of heterogeneous catalysts consisting of MoO2 complexes on carbon nanohorns has been reported [43
  • , some of the recent examples are presented. Molecular synthesis of unusual structures can lead to novel functional structures. Segawa's recent review describes the synthesis of nonplanar structures by molecular nanoarchitectonics of sp2-hybridized carbon atoms [92]. The flexibility of the structure
  • . Unlike conventional solution synthesis, low-temperature local probe chemistry allows for a free control of the radical state. This kind of local probe chemistry as a synthesis technique opens up the possibility of nanoarchitectonics synthesis of carbon nanomaterials. The tip-induced addition of single
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • different kinds of conductive carbon materials [14][15][16][17][18]. Recently, graphene (Gr)/graphene oxide (GO) has attracted the attention of many researchers due to its high surface area, significant chemical stability, high electrical conductivity, and high mechanical strength [12][19]. Combining a
  • and/or GO. For example, Wu et al. [13] chemically fabricated metal alloys and their oxides (NiCo, CoFe) with nitrogen-doped graphene (N-rGO/NiCo-NiO-CoO, N-rGO/CoFe-Co2FeO4) on a glassy carbon electrode (GCE). The N-rGO/NiCo-NiO-CoO and N-rGO/CoFe-Co2FeO4 catalysts revealed an OER overpotential (η) of
  • Figure 3a–d shows the X-ray absorption spectra (XAS) of the L3 edge of nickel (a), iron (b), cobalt (c), and carbon (d) in the studied catalysts. The appearance of a shoulder peak at the L3 edge of the nickel (Figure 3a) at 855 eV indicates the presence of oxides in the structure of the catalysts (Ni in
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • cause little damage to adjacent healthy tissues due to extremely localized heating [3]. Generally, the reduction of material dimensions to the nanoscale, such as in graphene, carbon nanotubes (CNT) and polymers, leads to an enhancement of the PT effect due to factors such as improved thermal
PDF
Album
Review
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • . Small volumes of Ch/Q- and Ch/CA-Ag NPs were placed on carbon-coated copper grids and allowed to evaporate at room temperature. For negative staining, a drop of freshly prepared 2% uranyl acetate solution was dripped on the copper grid, and excess liquid is removed by a piece of paper after 2 min. Zeta
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • allow for the integration of multiple functions derived from various types of nanocatalysts, such as semiconductor nanoparticles, plasmonic metals, and carbon-based and magnetic oxides, into the same host matrix. This enables effective tuning of the photocatalytic characteristics of the final
  • nanocomposite by extending the lifetime of the photogenerated carriers. It makes the catalysts recoverable by using external magnets and extends the range of absorption to the visible region for photocatalysis. According to [177][178][179][180], a junction between carbon-based and semiconductor materials can
PDF
Album
Review
Published 03 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • -assembled particles, cover slides described in the previous section were used. The slides were dried under vacuum and then adhered onto an aluminum sample holder using carbon tape. The samples were coated with platinum for 30 s using an EM ACE200 vacuum coater (Leica Microsystems GmbH, Wetzlar, Germany
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
PDF
Album
Review
Published 22 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • an efficient Pt-based catalyst for polymer electrolyte membrane fuel cells (PEMFCs) by using a cost-effective and efficient physical method to deposit platinum nanoparticles (PtNPs) on carbon supports directly from the platinum target. The method developed avoids the chemical functionalization of the
  • carbon substrate and the chemical synthesis of PtNPs during catalyst fabrication. Platinum was deposited on carbon particles at room temperature using a pulsed laser deposition (PLD) system equipped with an ArF excimer laser (λ = 193 nm). The uniform deposition of PtNPs on carbon supports was achieved
  • thanks to a specially designed electromechanical system that mixed the carbon support particles during platinum deposition. In the studies, Vulcan XC-72R carbon black powder, a popular material used as support in the anodes and cathodes of PEMFCs, and a porous carbon material with a high degree of
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • , 11000 Belgrade, Serbia 10.3762/bjnano.14.17 Abstract Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first
  • time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling–encapsulation–shrink method. Analyses of the results obtained by different
  • oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging. Keywords: antibacterial; bioimaging; carbon quantum dots; precursor; reactive oxygen species
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • samples dealloyed for 60 min in HCl and that for three selected Ag compositions is reported in Table 1. The sample showing the best SERS efficiency (i.e., AlAg30) is also the one with the highest concentration of Ag (54 atom %) and the lowest carbon concentration (9.1 atom %) on the surface. Besides the
  • property for this sample. Conversely, the lower SERS efficiency for the sample AlAg36 dealloyed for 60 min can be associated to the presence of a higher carbon content on the surface (17.8 atom %) and the rather low amount of silver on the surface (34.8 atom %). As already reported, the presence of carbon
  • on a metal surface induces hydrophobicity which can also affect the bonding with RhB molecules [30]. The carbon observed on the surface of the different samples is the result of the contamination of the substrate during wet etching and by the environment during storage [46]. Overall, the good
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • . Characterization methods Transmission electron microscopy experiments were performed using a Hitachi H600 microscope operating at an acceleration voltage of 75 kV. The samples were prepared by depositing one drop of the colloidal dispersion on conventional carbon-coated copper grids. The liquid evaporated in the
PDF
Album
Full Research Paper
Published 06 Jan 2023
Other Beilstein-Institut Open Science Activities