Search results

Search for "degradation" in Full Text gives 528 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • were used as photocatalysts for the degradation of methyl violet dye and the degradation efficiencies were found to be 72% and 99% for the mSiO2@NiPS and the mSiO2@NiPS/TiO2 nanostructures, respectively. Furthermore, a recyclability test revealed good stability and recyclability of the mSiO2@NiPS/TiO2
  • photocatalyst with a degradation efficacy of 93% after three cycles. The porous flake-like morphology of the nickel phyllosilicate acted as a suitable support for the TiO2 nanoparticles. Further, a coating of TiO2 on the mSiO2@NiPS surface greatly affected the surface features and optoelectronic properties of
  • the core–shell nanostructure and yielded superior photocatalytic properties. Keywords: bandgap energy; core–shell; dye degradation; nickel phyllosilicate; photocatalysts; Introduction Textile dyes and organic compounds are major water pollutants, which create an environmental hazard to aquatic
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • photocatalytic activity [20]. Since the photocatalytic degradation of organic molecules using a metal oxide photocatalyst is a heterogeneous process, it is obvious that efficiency and overall catalytic performance are strongly correlated to the number of active sites on the catalyst surface area and, thus, to
  • analyze the BiFeO3 nanomaterial are powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–visible reflectance spectroscopy. Furthermore, we investigated the photocatalytic efficiency of this nanomaterial under visible light in the degradation of rhodamine B (RhB) as a model
  • experiments The photocatalytic activity of the samples was evaluated regarding the degradation of RhB in water at room temperature under visible light using high-power LEDs with an emission wavelength of λ > 420 nm as a light source. In a typical experiment, 50 mL of dye solution (concentration of rhodamine B
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system

  • Hiroaki Komuro,
  • Masahiro Yamazoe,
  • Kosuke Nozaki,
  • Akiko Nagai and
  • Tetsuo Sasano

Beilstein J. Nanotechnol. 2020, 11, 1685–1692, doi:10.3762/bjnano.11.150

Graphical Abstract
  • medical and dental applications, such as dental implants, orthopedics, and drug delivery systems, since it has similar elements found in bone and teeth. In addition, CaP stabilizes the nucleic acid against nuclease degradation, forms ionic interactions with the phosphates of DNA, and its biodegradation is
  • degradation by facilitating the release of the gene into the cytoplasm. Endocytosis has been well known as the main mechanism for cellular uptake of nanoparticles into mammalian cells [13][14]. The endocytosis process encompasses four main routes [15]: phagocytosis, clathrin-mediated endocytosis, caveolae
  • . The physiological mechanism of macropinocytosis has been recently elucidated [28][29]. In previous reports, macropinosomes have been considered to be inherently leaky vesicles comparable to other types of endosomes [21][30][31][32]. In this study, since lysosomal degradation of pDNA was low, the
PDF
Album
Full Research Paper
Published 05 Nov 2020

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • : metal alloys; nanoporous; oxygen plasma; silver; thin films; Introduction Silver corrosion upon exposure to atomic oxygen is a phenomenon that was highly studied in the 1980s. At that time, the main aim was to avoid the degradation of silver interconnects and switches used in satellites navigating in
  • the low earth orbit (LEO) [1][2][3][4][5][6][7][8][9]. Silver degradation related to this phenomenon was attributed to the strong chemical reaction between silver and atomic oxygen present in the LEO resulting in the transformation of the metallic silver into highly stressed and nanoporous silver
PDF
Album
Full Research Paper
Published 22 Oct 2020

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • University of Texas at Dallas, Texas 75080, United States 10.3762/bjnano.11.137 Abstract Methyl parathion (MP) is one of the most neurotoxic pesticides. An inexpensive and reliable one-step degradation method of MP was achieved through an aqueous suspension of copper(I) oxide nanoparticles (NPs). Three
  • different NPs sizes (16, 29 and 45 nm), determined with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), were synthesized using a modified Benedict’s reagent. 1H nuclear magnetic resonance (NMR) results show that the hydrolytic degradation of MP leads to the formation of
  • 4-nitrophenol (4-NPh) as the main product. While the P=S bond of MP becomes P=O, confirmed by 31P NMR. Although Cu2O is a widely known photocatalyst, the degradation of methyl parathion was associated to the surface basicity of Cu2O NPs. Indirect evidence for the basicity of Cu2O NPs was achieved
PDF
Album
Full Research Paper
Published 12 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • , genes related to the general stress response were upregulated. Genes protecting against hydrogen peroxide oxidative damage, catalase/hydroperoxidase, superoxide radicals degradation genes, superoxide dismutase, and superoxide removal transcriptional activator, were upregulated in a range varying from
PDF
Album
Review
Published 25 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • electrochemical long-term stability of these electrodes is often unsatisfactory due to particle coalescence and Ostwald ripening [15]. These degradation processes can be avoided by increasing interparticle distance (at the expense of the electrochemically active surface) or by creating barriers to prevent NP
  • explained by the aforementioned removal of carbon at the Pt-NPs surface and slower degradation of the Pt/CNW catalysts as observed in Figure 8. However, the degradation mechanisms behind the ECSA loss on both Pt/CNW and HiSPEC4000 are quite similar, as seen from the exponential decay of ECSA in Figure 8. In
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Triboelectric nanogenerator based on Teflon/vitamin B1 powder for self-powered humidity sensing

  • Liangyi Zhang,
  • Huan Li,
  • Yiyuan Xie,
  • Jing Guo and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2020, 11, 1394–1401, doi:10.3762/bjnano.11.123

Graphical Abstract
  • , food safety, wearable electronics, and wireless sensor networks [1][2][3][4]. However, conventional power generation is needed to supply energy to these sensor networks, which leads to increased energy usage and adverse impacts on the environment. More specifically, the degradation of the urban
PDF
Album
Full Research Paper
Published 11 Sep 2020

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • sufficient to avoid any structural changes or phase degradation in the samples. Under these conditions, the typical total acquisition time to obtain a spectrum with good signal-to-noise ratio was several hours. Temporal variation of pH when 2 mL of the ion mixture (1 M FeCl3 + 0.5 M FeSO4 in 0.1 M HCl) is
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • nanoparticles to the acidic environment of living organisms, certain structural degradation processes occur due to the corrosion of nanoparticle surfaces. This biodegradation in acidic media leads to significant changes in the nanoparticle magnetic properties over time [9]. Since the nanoparticle surfaces are
PDF
Album
Full Research Paper
Published 12 Aug 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • -dependent endocytosis. Opsonized dextran-coated SPIONs between 1.2 and 4.6 nm are taken up by macrophages through receptor-mediated endocytosis and not pinocytosis, followed by degradation in lysosomes [118]. In a study comparing dimension, concentration, and time of action on macrophages of SPIONs, Huang
  • iron metabolism to complete. They found that mesenchymal stem cells needed a sodium acetate buffer with pH 4.5 to completely reduce the iron, which took them less than seven days. At pH 5.5, they obtained a measurable iron release after 48 h. To prevent the lysosomal degradation of SPIONs, Wu et al
  • . developed a method of including uncoated SPIONs in hollow carbon spheres. They showed that the nanoparticles remained unaffected by cellular degradation and maintained their magnetization properties [130]. Hennig et al. studied the way nanoparticles cross human arterial walls under real flow conditions when
PDF
Album
Review
Published 27 Jul 2020

Plant growth regulation by seed coating with films of alginate and auxin-intercalated layered double hydroxides

  • Vander A. de Castro,
  • Valber G. O. Duarte,
  • Danúbia A. C. Nobre,
  • Geraldo H. Silva,
  • Vera R. L. Constantino,
  • Frederico G. Pinto,
  • Willian R. Macedo and
  • Jairo Tronto

Beilstein J. Nanotechnol. 2020, 11, 1082–1091, doi:10.3762/bjnano.11.93

Graphical Abstract
  • applied concentration (2.7 × 10−3 mg·L−1). Untreated seeds (control) and the seeds coated with the M3 film showed better performance than seeds coated with the M4 film. The coating acted as a physical barrier, hindering water absorption by the seeds, but also preventing the degradation of NAA, which is
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • results in the decay of ROS production due to molecular degradation. There have been several attempts to enhance the PDT properties of organic molecules like Ce6 by the preparation of composites using nanoparticles [14][15][16]. Such hybrid nanomaterials take advantage of both the good photosensitizer
PDF
Album
Full Research Paper
Published 17 Jul 2020

Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers

  • Stefanie Schlicht,
  • Korcan Percin,
  • Stefanie Kriescher,
  • André Hofer,
  • Claudia Weidlich,
  • Matthias Wessling and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2020, 11, 952–959, doi:10.3762/bjnano.11.79

Graphical Abstract
  • to stability measurements on very long operation timescales (years) or accelerated degradation tests. Under the operating conditions of a vanadium–air redox flow battery, however, the ALD-treated electrodes show a significant stability improvement towards the strongly acidic vanadium electrolyte
PDF
Album
Full Research Paper
Published 22 Jun 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • emission properties were studied by photoluminescence spectroscopy under excitation at 325 nm. It was found that annealing at 500 °C leads to the production of macroscopically homogeneous wurtzite phase films, while thermal treatment at higher or lower temperature results in the degradation of the
  • photodiodes. The performed investigations demonstrate that post-deposition annealing at 500 °C is needed for the production of wurtzite single crystallographic phase Zn1−xMgxO films in the composition range of x = 0.00–0.40. Annealing at higher temperature leads to morphology degradation, while thermal
PDF
Album
Full Research Paper
Published 12 Jun 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • multi-vesicular bodies. Multi-vesicular bodies can either shuttle their cargo for exocytosis or fusion with lysosomes, where cargo degradation can occur. However, the cargo can avoid this fate by being shuttled back from the lysosomes to the Golgi apparatus and early endosomes by retrograde transport
  • suggest that OX26 might reach the brain through the blood–CSF barrier [118]. Furthermore, some studies have shown that anti-TfR antibodies with high affinity/avidity for the receptor could be sorted toward lysosomal degradation after endocytosis, whereas antibodies with lower affinity/avidity were sorted
  • advantages over PBCA. They are FDA-approved and have a slower degradation rate than PBCA, allowing for a more sustained delivery [148][149]. Furthermore, a formulation of PLGA nanoparticles loaded with doxorubicin (NanoBB-1-Dox) has been investigated in a phase-I clinical trial for the treatment of
PDF
Album
Review
Published 04 Jun 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • was detected, which may be attributed to material degradation arising in WSe2 through the possibility of an increased point defect density at higher temperatures, and/or through oxidative effects. From our preliminary checks on the samples, the Raman spectrum does not recover once the temperature is
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • Since 1972, when Shimada and Honda discovered the photocatalysis of titanium dioxide (TiO2) under ultraviolet light, research in this field has continued to grow [1]. Recently, TiO2 has been utilized in the fields of photocatalytic water decomposition [2], photocatalytic organic degradation [3], and
  • artificial photosynthesis [4]. In particular, research on the application of TiO2 in the field of water pollution degradation has experienced a notable increase due to its nontoxicity, nonpollutant nature, high chemical stability, and low cost [5]. However, the absorption spectrum of pure TiO2 is too narrow
  • these experiments, the degradation efficiency can be described by the Lambert–Beer law and the Langmuir–Hinshelwood model as follows: where Abs. is the solution absorbance, a is the solution absorbance coefficient, b is the optical path, C is the solution concentration, C0 is the initial concentration
PDF
Album
Full Research Paper
Published 05 May 2020

Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact

  • Aliyu Kabiru Isiyaku,
  • Ahmad Hadi Ali and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2020, 11, 695–702, doi:10.3762/bjnano.11.57

Graphical Abstract
  • ]. Further treatments beyond 500 °C resulted in the degradation of the film structure due to the appearance of metallic nanoparticles on the surface of the multilayer [4][28]. Furthermore, Cho et al. estimated a figure of merit of 12.28 × 10−4 Ω−1 for a 5.07 nm thick intermediate Al film after annealing at
PDF
Album
Full Research Paper
Published 27 Apr 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • , and properties of the CNFMs was investigated, and the optimal process parameters were determined. Then, the CNFMs obtained with optimal process parameters were applied for the photocatalytic degradation of methyl orange. It was found that the CNFMs could be reused to degrade methyl orange at least
  • three times, and the degradation rate remained above 90%. Keywords: electrospinning; composite nanofibers; heterostructured CuO–ZnO; hydrothermal synthesis; photocatalysis; semiconductor oxide; Introduction Water remediation is one of the main scientific research subjects regarding environmental
  • a high photocatalytic activity because of a better charge separation [16][17][18][19][20][21][22]. Liu et al. [23] prepared CuO/ZnO nanocomposites by homogeneous coprecipitation and used them for the photocatalytic degradation of methyl orange. Wei et al. [24] fabricated CuO/ZnO composite nanofilms
PDF
Album
Full Research Paper
Published 15 Apr 2020

Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon

  • Hyung Jun An,
  • Jong Min Park,
  • Nazmul Abedin Khan and
  • Sung Hwa Jhung

Beilstein J. Nanotechnol. 2020, 11, 597–605, doi:10.3762/bjnano.11.47

Graphical Abstract
  • membrane separation [2][6][7]. However, these techniques are not very satisfactory for applications on a large scale. For example, dyes are very resistant against degradation by catalysis, with a common example given by the stable characteristics of dyes under even sunlight. Recently, adsorption has been
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • potential with ageing, due to irreversible phase transitions, side reactions on the surface and coarsening of grains [22]. Hiesgen et al. used CAFM to study the degradation of lithium–sulphur cathodes during ageing and found a strong decrease of the conductive area of the sample, which correlated well with
  • the capacity degradation of the samples [23]. Electrochemical strain microscopy (ESM) is a relatively new AFM contact mode, which probes ionic charges accumulated in a small volume under the AFM tip after application of an electric field by measuring the resulting surface strain [24][25][26]. It was
  • and aged LiMnO2 cathodes and found a decrease of the diffusion coefficient in the aged sample due to structural degradation of the material [30]. Zhu et al. studied the degradation of LiNi0.3Co0.3Mn0.3O2 by ESM and showed a decrease in the ESM amplitude over the ageing of the cathode material, which
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • additional challenges. This is attributed to an increased complexity, a decreased transmission of visible light through biological tissues, the interaction with various biomolecules and a possible degradation of the luminescent materials. However, NIR emission, biocompatibility, and photothermal stability
PDF
Album
Review
Published 30 Mar 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • also been seen in natural biopolymers such as polypeptides, polynucleotides, lipids and polysaccharides as they are biodegradable under common physiological conditions via enzymatic and pH induced degradation [8]. The advantage of LbL-assembled capsules lies in the versatility of interactions (e.g
  • release of therapeutic agents upon minor variations in the environmental characteristics, surface modification and suppression of inter-chain interaction to the degradation/rearrangement of LbL films under the action of physical factors [19][20]. In spite of the fact that weak PE systems can also offer
  • low-fouling hybrid capsules with a controlled degradation profile were prepared by combining two different systems of PVPAlk-PMA and PGAAlk-PVP to form stratified PGAAlk-PVPAlk capsules [97]. The degradation could be controlled by the number as well as position of the non-degradable PVPAlk layer. The
PDF
Album
Review
Published 27 Mar 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • (at 100 mV·s−1). The LSV scans of ORR before and after 1000 cycles are given in Supporting Information File 1, Figure S8 and the results show that all the EEG samples, irrespective of the degree of functionalization, display very little degradation in performance. This indicates that the
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020
Other Beilstein-Institut Open Science Activities