Search results

Search for "BODIPY" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • . Transferrin [1] can be used as a maker for clathrin-mediated endocytosis (CME), bodipy-lactosylceramide (LacCer) can be used for caveolae-mediated endocytosis, and dextran with large molecular masses can be used for macropinocytosis [36]. Moreover, concentration should be optimized (Table 2) and toxicity
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • accomplish PDT using NIR light irradiation, adamantane-modified phthalocyanine was connected to upconversion nanoparticles using carboxymethyl-β-CyD [76]. Furthermore, boron-dipyrromethene (BODIPY) photosensitizer was complexed with amphiphilic α-CyD bearing oligo(ethylene glycol) chains [77]. By
PDF
Album
Review
Published 09 Feb 2023

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • effects in comparison to neat gold nanoparticles. To further improve the photothermal activity, we introduced the organic photothermal agent boron dipyrromethene (BODIPY) to Au-LNPs for synergistic PTT. Au- and BODIPY-grafted LNPs (AB-LNPs) were formed by simply mixing Au-LNPs with BODIPY. The BODIPY
  • could be associated stably to Au-LNPs, and the release of BODIPY from AB-LNPs could be accelerated by laser irradiation. AB-LNPs are scalable and showed excellent photothermal effects. AB-LNPs showed enhanced cellular uptake efficiency compared to free BODIPY in 4T1 breast cancer cells. Under laser
  • irradiation, AB-LNPs exhibited synergistic photothermal effects with significantly reduced dosage compared to monotherapy (treatments with Au-LNPs or free BODIPY alone). This study thus provides a facile and adaptive strategy for the development of a scalable and safe high-performance nanoplatform for
PDF
Album
Full Research Paper
Published 02 Dec 2022

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • could be obtained with an environmentally friendly strategy using a lipase for sugar transesterification. Liu et al. have described a tri-block polymer system functionalized with galactose (PMAGP-POEGMA-Plys-Bodipy) [114]. Poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) plays the role of
  • a hydrophilic shell for micelle stabilization, and the derivatized polylysin (Plys) acts as a hydrophobic core to load the photosensitizer (BODIPY), while PMAGP mainly serves to direct the target delivery to hepatoma cancer cells. Folate (FA) has been extensively studied as a targeting moiety [116
PDF
Album
Review
Published 15 Jan 2020

Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics

  • Stefania Lettieri,
  • Marta d’Amora,
  • Adalberto Camisasca,
  • Alberto Diaspro and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2017, 8, 1878–1888, doi:10.3762/bjnano.8.188

Graphical Abstract
  • boron dipyrromethene (BODIPY) dye with on/off modulated fluorescence emission activated by an acidic environment. The switching properties are linked to the photoinduced electron transfer (PET) characteristics of the dimethylamino functionalities attached to the BODIPY core. The on/off emission of the
  • transfer (PET) and internal charge transfer (ICT) donor characteristics of the dimethylamino functionalities attached to a π-extended distyryl-substituted boron dipyrromethene (BODIPY) dye [23][24] to obtain a pH-sensitive nano-probe. Hence, CNOs grafted with BODIPY 3 molecules (fluo-CNOs) led to the
  • procedure [25][26]. The condensation with dimethylaminobenzaldehyde led to the NIR-BODIPY derivative 3. The surface functionalization of 5 nm pristine CNOs (p-CNOs), synthetized by thermal annealing of d-NDs, was obtained by an oxidation process using a 3 M solution of nitric acid under reflux condition
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2017

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • -borondipyrromethenes (azaBODIPYs) were attached to the CNOs through an amidation reaction [40]. In another very recent study, we attached a meso-phenol-substituted borondipyrromethene (BODIPY) fluorophore on the same benzoic acid functionalized CNO nanomaterial through an esterification reaction [41]. These
  • promising material for biomedical applications. Recently we demonstrated the cellular imaging of HeLa Kyoto [40] and MCF-7 cells [41] after incubating them with azaBODIPY- or BODIPY-functionalized CNOs (Scheme 8 and Figure 7). In both cases the CNO conjugates were readily internalized by the cells. In the
  • (green) and nuclei stain Hoechst (blue) (right). Reprinted with permission from [39]. Copyright 2013 John Wiley and Sons. Confocal images of azaBODIPY-CNOs in HeLa Kyoto cells (left) and BODIPY-CNOs in MCF-7 cells (right). The blue luminescence is due to Hoechst 33342 nuclear stain. Reproduced with
PDF
Album
Review
Published 04 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
PDF
Album
Review
Published 03 Nov 2014
Other Beilstein-Institut Open Science Activities