Search results

Search for "FePt" in Full Text gives 29 result(s) in Beilstein Journal of Nanotechnology.

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • ]. Bimetallic particles can be classified into 5 groups [30]: Stoichiometrical compounds with well defined crystal structures. Examples are CdSe semiconductor particles or magnetic FePt particles [31]. Undefined mixtures. Two compounds are completely miscible. This situation occurs if the bulk metals have
PDF
Album
Review
Published 22 Nov 2010

Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles

  • Damien Alloyeau,
  • Christian Ricolleau,
  • Cyril Langlois,
  • Yann Le Bouar and
  • Annick Loiseau

Beilstein J. Nanotechnol. 2010, 1, 55–59, doi:10.3762/bjnano.1.7

Graphical Abstract
  • ; nanosecond pulsed laser annealing; order-disorder transformation; Introduction Future high-density recording systems require 10 nm magnetic grains with a high magnetic anisotropy (Ku) to insure their thermal stability [1]. CoPt and FePt nanoparticles (NPs) in the chemically ordered L10 structure [2] are
  • applications depend on the ability to synthesize NPs with a very good control over the size distribution and the chemical composition. Up to now, only chemical synthesis is able to produce monodisperse CoPt [6] and FePt [7][8] NPs with a polydispersity (that is, standard deviation divided by the mean size) as
PDF
Album
Full Research Paper
Published 22 Nov 2010

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • Ulf Wiedwald Luyang Han Johannes Biskupek Ute Kaiser Paul Ziemann Institut für Festkörperphysik, Universität Ulm, 89069 Ulm, Germany Materialwissenschaftliche Elektronenmikroskopie, Universität Ulm, 89069 Ulm, Germany 10.3762/bjnano.1.5 Abstract Monatomic (Fe, Co) and bimetallic (FePt and CoPt
  • distances which are at least 6 times larger than the particle diameter. Focus is placed on FePt alloy nanoparticles which show a huge magnetic anisotropy in the L10 phase, however, this is still less by a factor of 3–4 when compared to the anisotropy of the bulk counterpart. A similar observation was also
  • found for CoPt nanoparticles (NPs). These results are related to imperfect crystal structures as revealed by HRTEM as well as to compositional distributions of the prepared particles. Interestingly, the results demonstrate that the averaged effective magnetic anisotropy of FePt nanoparticles does not
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010

Preparation, properties and applications of magnetic nanoparticles

  • Ulf Wiedwald and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 21–23, doi:10.3762/bjnano.1.4

Graphical Abstract
  • FePt or CoPt, which are well known for their high anisotropies, this approach should allow enhancing the related blocking temperatures significantly above ambient even for corresponding NPs with diameters of 3 nm if the particle anisotropy keeps its bulk value. In practice, however, that is exactly the
PDF
Video
Editorial
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities