Search results

Search for "TiN" in Full Text gives 178 result(s) in Beilstein Journal of Nanotechnology.

Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions

  • Masao Kaneko,
  • Hirohito Ueno and
  • Junichi Nemoto

Beilstein J. Nanotechnol. 2011, 2, 127–134, doi:10.3762/bjnano.2.15

Graphical Abstract
  • are transported first to the fluorine-doped tin oxide (FTO, SnO2:F) conductive layer through TiO2 grain boundaries and then to the cathode reducing electron acceptor there (O2 in the present case). In a Schottky junction, under the conditions when the band structure is flat without any bending, the
PDF
Album
Full Research Paper
Published 28 Feb 2011

Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

  • Mario Boehme,
  • Emanuel Ionescu,
  • Ganhua Fu and
  • Wolfgang Ensinger

Beilstein J. Nanotechnol. 2011, 2, 119–126, doi:10.3762/bjnano.2.14

Graphical Abstract
  • nanotubes consisting of indium tin oxide (ITO) were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs) with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported
  • nanotubes; electroless deposition; indium tin oxide; ion track template; nanotubes; Introduction Oxide based semiconductive nanostructures have attained a position of significance in science and engineering. For many of these materials reliable syntheses are now available and a wide range of applications
  • homogeneous layers with thicknesses much greater than the desired outer diameter of the required ITO-NTs. In the present work, we investigated the essential conditions for the growth of ITO-NTs to achieve a wall thickness below 20 nm, using indium sulfate, tin sulfate and (CH3)2NH·BH3 (dimethylamine borane
PDF
Album
Full Research Paper
Published 21 Feb 2011

Low-temperature solution growth of ZnO nanotube arrays

  • Ki-Woong Chae,
  • Qifeng Zhang,
  • Jeong Seog Kim,
  • Yoon-Ha Jeong and
  • Guozhong Cao

Beilstein J. Nanotechnol. 2010, 1, 128–134, doi:10.3762/bjnano.1.15

Graphical Abstract
  • of tube-shaped ZnO was due to a selective deposition of colloidal Zn(OH)2 at the edge of the (001) plane of ZnO nanorods that were formed in the beginning stage of the reaction. Results and discussion Figure 1 shows the SEM image of the film of ZnO seeds on an indium doped tin oxide (ITO) substrate
  • . Experimental ZnO nanorods were grown on an indium doped tin oxide (ITO) glass substrate, on which ZnO nanocrystallites as seeds were pre-prepared via an electrophoretic deposition. Typically, the ITO substrate was immersed in a 0.5 M zinc nitrate (Fisher Scientific Corp., USA), and an electric potential of 2.5
PDF
Album
Full Research Paper
Published 09 Dec 2010
Other Beilstein-Institut Open Science Activities