Search results

Search for "amphibians" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Frog tongue surface microstructures: functional and evolutionary patterns

  • Thomas Kleinteich and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 893–903, doi:10.3762/bjnano.7.81

Graphical Abstract
  • in the spectra of prey items between frog taxa. Keywords: adhesion; amphibians; biological materials; feeding; high-resolution micro-CT; Introduction Frogs (Lissamphibia: Anura) are famous for their adhesive tongues, which allow them to catch elusive prey. While the movements of the tongue during
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2016

NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials

  • Katre Juganson,
  • Angela Ivask,
  • Irina Blinova,
  • Monika Mortimer and
  • Anne Kahru

Beilstein J. Nanotechnol. 2015, 6, 1788–1804, doi:10.3762/bjnano.6.183

Graphical Abstract
  • , fish, plants and bacteria. Those organisms included yeasts, protists, amphibians, bivalves, cnidarians, echinoderms, insects, nematodes, rotifers, snails and worms (Table S5, Supporting Information File 1). Hence, quite a wide range of test organisms has already been included in the evaluation of
PDF
Album
Supp Info
Full Research Paper
Published 25 Aug 2015

Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals

  • Adrian Klein and
  • Horst Bleckmann

Beilstein J. Nanotechnol. 2011, 2, 276–283, doi:10.3762/bjnano.2.32

Graphical Abstract
  • skin and are found in crustaceans [1], as well as in spiders and insects [2]. These sensors enable insects and spiders to perceive air displacements down to flow amplitudes of 30 μm/s [3]. Flow sensors are also found in fish and aquatic amphibians and are called lateral line neuromasts. With neuromasts
PDF
Album
Full Research Paper
Published 06 Jun 2011
Other Beilstein-Institut Open Science Activities