Search results

Search for "anticancer" in Full Text gives 71 result(s) in Beilstein Journal of Nanotechnology.

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • anticancer drugs while mitigating the adverse effects of large dosage administration [6][7]. Additionally, it offers several advantages, such as controlled release, targeted drug delivery, and improved stability [8]. Moreover, nanoscale drug delivery systems hold great promise for specific cancer treatments
  • multifunctional PEGylated magnetic nanoparticles coated with polydopamine (PDA) exhibit strong near-infrared absorption because of the PDA layer and have the ability to deliver drugs under a magnetic field owing to their superparamagnetism [51]. During the drug loading studies, the anticancer drug vinorelbine was
PDF
Album
Full Research Paper
Published 28 Feb 2024

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • cytotoxicity of CUR-HSA-MPs showed promising anticancer potential against human hepatocellular carcinoma (Huh-7) and human breast adenocarcinoma (MCF-7) cell lines, although this effect was less pronounced in human dermal fibroblasts (HDFB) and human cholangiocyte (MMN) cell lines. Confocal microscopy was used
  • especially anticancer potential [1][2]. Several in vivo and in vitro studies in recent years have demonstrated that CUR can influence cancer cell proliferation, invasion, angiogenesis, and metastasis [3]. It has been reported that CUR exerts anticancer effects in human breast cancer cells (MCF-7) by
  • % (Huh-7, Figure 6B) and 58% to 32% (MCF-7, Figure 6D). The CUR-HSA-MPs showed lower cytotoxicity than free CUR at the same drug concentrations. This could be explained by its drug delivery process, which is a common feature of polymer anticancer drugs. Enhanced and sustained release of CUR is attributed
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • reduced graphene oxide (rGO), SERS imaging can be done along with photothermal therapy [84]. Recently, our group developed a multifunctional rGO–Au nanoscale architecture loaded with Raman dye and anticancer drugs for fluorescence/SERS imaging-guided breast cancer therapy. Under activation of a laser at
  • Photodynamic Therapy, vol. 29, by J. Depciuch; M. Stec; B. Klebowski; A. Maximenko; E. Drzymała; J. Baran; M. Parlinska-Wojtan, “Size effect of platinum nanoparticles in simulated anticancer photothermal therapy“, article no. 101594, Copyright (2019), with permission from Elsevier. This content is not subject
PDF
Album
Review
Published 04 Oct 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • characterization of quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles (Ch/Q- and Ch/CA-Ag NPs), and their antibacterial and anticancer activities. The formation of Ch/Q- and Ch/CA-Ag NPs has been confirmed by ultraviolet–visible (UV–vis) spectroscopy, Fourier-transform
  • colloidal core Ag NPs, was confirmed by UV–vis, and FTIR analyses, and monitored by TEM microscopy. The size of nanoparticles has been determined as 11.2 and 10.3 nm for Ch/Q- and Ch/CA-Ag, respectively. The anticancer activity of Ch/Q- and Ch/CA-Ag NPs has been evaluated against U-118 MG (human
  • glioblastoma) and ARPE-19 (human retinal pigment epithelium) cells. Both NPs showed anticancer activity, but Ch/Q-Ag NPs seemed to be more effective on cancer cell lines (U-118 MG) in comparison to healthy ones (ARPE-19). Furthermore, the antibacterial activity of Ch/Q- and Ch/CA-Ag NPs against Gram-negative
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • considered one of the best materials with anticancer properties. Most of the administered NPs that end up in the bloodstream interact with the endothelial layer. The interaction of the NPs with the endothelium widens the existing gaps or induces new ones in the monolayer of vascular endothelial cells, thus
  • conditions, such as cancer, the distance between endothelial cells significantly widens (up to 2000 nm). Most nanomedicine capitalizes on the size of these gaps and relies on appropriately sized NPs to cross the gaps and accumulate at specific sites [31]. In the case of anticancer nanomedicine, an important
  • junctions of the endothelium and the fact that this effect does not depend on the physiology and microenvironment of the tumor. Therefore, NanoEL is a new approach that can be used in anticancer therapies, especially in the transport of medicinal substances to immature and hard-to-reach tumors. Nevertheless
PDF
Album
Review
Published 08 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • ]. A biomimetic particle model using PLGA NPs as a carrier for the anticancer drug doxorubicin (Dox) encapsulated by the HepG2 liver cancer cell membrane was designed for the treatment of HCC [31]. The HepG2 cell membrane-encapsulated NPs exhibited superior antitumor effects compared to bare NPs and
  • anticancer effects [76]. After QT was delivered to tumor tissue by the active targeting ability of the membrane, the sensitivity to radiotherapy was effectively improved, and a strong anticancer effect was exerted under X-ray irradiation [76]. Gong et al. designed a pH-responsive multifunctional biomimetic
  • (NIR) radiation to ablate cells or trigger the release of related therapeutic drugs [94][96]. PTT is characterized by noninvasiveness, deep tissue penetration, and high anticancer efficiency, showing good prospects in clinical treatment [97]. Biomimetic NPs of mesoporous polydopamine nanocarriers have
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • complexity of resistance and continuous cancer mutations. Co-delivery of TK inhibitors with anticancer drugs, immunotherapy, or gene-specific therapeutics to disrupt key resistance pathways, reactivate p53-mediated apoptosis, or inhibit cellular drug efflux are only a few examples of strategies used to fight
  • cancer resistance mechanisms successfully [23][24]. In addition, co-delivery of anticancer therapy using surface-engineered nanoparticles for tumor targeting may alleviate some of the unwanted effects on off-site targets and increase the therapeutic concentration at the site of action as well as efficacy
  • nanomedicines as tools for the targeted delivery of high concentrations of anticancer drugs at their site of action. Although designated as molecularly targeted therapies, the targeting of receptors by EGFR TKIs and other receptor inhibitors is not absolute. Once the EGFR TKIs are absorbed from the
PDF
Album
Review
Published 22 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • very stiff. Upon photoirradiation, however, the crosslinkings for the gel formation are broken almost completely, releasing the encapsulated drugs (e.g., DOX as anticancer drug). 2.3 Upconversion nanoparticles to release drugs by near-infrared light As an external stimulus for DDSs, near-infrared (NIR
  • recent topics on medical applications of CyD 6.1 Chemical modification of CyD for precise targeting to predetermined cells A multicharged nanoassembly was constructed from β-CyD bearing seven hexylimidazolium units, adamantane-grafted hyaluronic acid, and chlorambucil (an anticancer drug) [90]. In cancer
  • efficacy of chlorambucil was greatly increased since it remained in the cell for a long time. Furthermore, an anticancer drug and a resistance-suppressing gene were simultaneously delivered for cooperation [91]. For delayed drug release, anionic β-CyD polymers bearing carboxylate residues are useful [92
PDF
Album
Review
Published 09 Feb 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • , 11000 Belgrade, Serbia 10.3762/bjnano.14.17 Abstract Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first
  • and thermally stable, quasi-spherical, photoluminescent material with very good antibacterial and anticancer properties under visible light irradiation [9][10][11][12][13][14][15][16]. This material has very good biocompatibility, including low dark cytotoxicity and good cell proliferation
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • and anticancer properties of AgNPs synthesized from pineapple peel. The authors reported a favorable antimicrobial activity at low concentrations of AgNPs. Das et al. [17] found that AgNPs synthesized in the same way have high antidiabetic potential and high cytotoxicity against HepG2 cancer cells in
PDF
Album
Full Research Paper
Published 13 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • ), indicating that BDP has good stability under these release conditions. Cellular uptake of AB-LNPs Efficient cellular internalization of drugs is critical to the anticancer therapeutic effects [26][27]. From the above studies, we found that DSPE-DTPA/Au3+/BDP at a molar ratio of 2:1:1 could form uniform
PDF
Album
Full Research Paper
Published 02 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • drug delivery system loaded with docetaxel (DCX) as an anticancer drug, using poly(lactic-co-glycolic acid) (PLGA) as nanoparticle material, and modified with chitosan (CS) to gain mucoadhesive properties. In this context, an innovative nanoparticle formulation that can protect orally administered DCX
  • studies on the Caco-2 cell line, the CS/DCX-PLGA formulation increased permeability by 383% compared to free DCX (p < 0.05). In the light of all results, CS/DCX-PLGA NPs can offer a promising and innovative approach as an oral anticancer drug-loaded nanoformulation for intestinal tumors. Keywords
  • -synthetically from 10-deacetyl-baccatin isolated from the Taxus family (T. baccata and T. brevifolia). It is a potent and long-known anticancer agent that acts in the metaphase-anaphase process of cancer cells, exerts a cytotoxic effect on microtubules that are vital for mitotic cellular activity, and prevents
PDF
Album
Full Research Paper
Published 23 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • -inflammatory, and anticancer). The physicochemical characterization of the supramolecular assembly (nanoGSP) in terms of size and colloidal stability was investigated by complementary spectroscopic techniques, such as UV–vis, ζ-potential, and dynamic light scattering (DLS). Furthermore, the role of PolyCD
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • using mesenchymal stem cells showed that the fabricated biocomposite has exceptional osteogenic potential [96]. In another research study, Chen et al. (2013) fabricated selenium-incorporated and chitosan-covered TiO2 nanotubes. Further investigation demonstrates the antibacterial, anticancer, and
  • wettability of the chitosan/reduced graphene oxide composites with specific acetic acid and lactic acid shows water contact angles of (75.40° ± 4.32°) and (36.71° ± 4.53°) [60]. The anticancer agent cisplatin was loaded into graphene oxide/hydroxyapatite/chitosan composites to enable proliferation of
  • osteoblasts and inhibition of the development of osteosarcoma cancer cells in the work by Sumathra et al. (2018). The in vitro experiment was carried out by using the osteosarcoma MG-63 cell line. The MTT assay for the composites showed cell expansion and growth. The anticancer activity of cisplatin-loaded
PDF
Review
Published 29 Sep 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • extracts. PRP exhibits important pharmacological activity, already proven in several studies, in addition to being a biologically safe compound [17][18][19][20][21]. This natural drug is also widely used as antimicrobial agent, immune system strengthener, and anticancer drug in the form of its ethanolic or
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • cell line, one study investigated the anticancer activity of polymeric nanoparticles developed with many compounds (curcumin, EGCG, green tea extract, resveratrol, saponins, silymarin, and grape seed extract). Those nanoparticles target multiple signaling pathways and cause growth inhibitory effects on
PDF
Album
Full Research Paper
Published 31 May 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • attention because of its high antioxidant, anti-inflammatory, antimicrobial, and anticancer efficacy. Especially regarding antioxidation, Myr is capable of not only chelating intracellular transition metal ions for removing reactive oxygen species, but also of activating antioxidant enzymes and related
  • ]. However, low loading efficiency, systemic toxicity, and tedious preparation processes hinder biomedical applications. Myricetin (Myr), a well-known natural flavonoid, has drawn wide attention because of its high antioxidant, anti-inflammatory, antimicrobial, and anticancer efficacy [16]. Myr is capable of
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • cells containing TiO2 nps undergo oxidative degeneration upon light irradiation under the influence of generated ROS and, therefore, these nps are considered as a potent photosensitizer in anticancer photodynamic therapy and the photodynamic inactivation of antibiotic-resistant bacteria [15]. TiO2
PDF
Album
Review
Published 14 Feb 2022

Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy

  • Xiaoteng Liang,
  • Shuai Liu,
  • Xiuchao Wang,
  • Dan Xia and
  • Qiang Li

Beilstein J. Nanotechnol. 2021, 12, 1372–1379, doi:10.3762/bjnano.12.101

Graphical Abstract
  • aggressive cancer cell BxPC-3. In addition, the Young's modulus of MIA PaCa-2 rises with the increasing of DOX concentration. This study may provide a new strategy of detecting cancer, and evaluate the possible interaction of drugs on cells. Keywords: anticancer drug; atomic force microscopy; nanomechanical
  • possibility for the early diagnosis of cancer [7]. In recent decades, anticancer drugs have been developed in great number, enabling the control and treatment of many cancers to improve life quality and life span of people. Many approved anticancer drugs have significant effects on cell membrane proteins and
  • from measuring the alteration of cellular mechanics, which provides a guide for the innovation and development of anticancer drugs [11]. Atomic force microscopy (AFM) has matured into a forceful nanoscale platform for imaging biological samples and quantifying biomechanical properties of living cells
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2021

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • (MFe2O4, where M = Fe, Co, Ni, or Zn) nanoparticles (NPs) were developed as carriers of the anticancer drugs doxorubicin (DOX) and methotrexate (MTX). Physical characterizations confirmed the formation of pure cubic structures (14–22 nm) with magnetic properties. Drug-loaded NPs exhibited tumor
  • excellent magnetic, colloidal, cytotoxic, and biocompatible aspects. However, detailed mechanistic, in vivo cytotoxicity, and magnetic-field-assisted studies are required to fully exploit these nanocarriers in therapeutic applications. Keywords: anticancer drugs; doxorubicin; drug carriers; in vitro
  • functionalized with anticancer drugs, such as doxorubicin (DOX) and methotrexate (MTX) via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) chemistry. The samples were stored at room temperature for further experiments. Our aim was to compare the biocompatibility, colloidal stability, and in vitro
PDF
Album
Full Research Paper
Published 02 Dec 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • metabolism, low bioavailability, and fast elimination of the molecule. Considering this, the present work reviews the use of CUR-based nanosystems as anticancer agents, including conventional nanosystems (i.e., liposomes, nanoemulsions, nanocrystals, nanosuspensions, polymeric nanoparticles) and nanosystems
  • subcellular anticancer therapies which carry the drug and better focus it on the intended target. They are also able to contain molecules that respond to endogenous (tumor microenvironment, including redox potential, pH, enzymes, ions, or biomolecules) and/or exogenous stimuli (light, electromagnetic fields
  • cancer-related papers. The beneficial effects of CUR as an anticancer agent is derived from its chemopreventive [16], antiproliferative [17], antiangiogenic [18] and antimetastatic capabilities [19]. Unfortunately, these benefits can be minimized due to the lipophilic nature, rapid metabolism, low
PDF
Album
Review
Published 15 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • therapy; sonoporation; theranostics; ultrasound; ultrasound responsive nanomaterials; Review Introduction Smart drug delivery vehicles It is well known that the administration of most anticancer drugs can produce considerable systemic toxicity, which in some cases can be dose-limiting. Whether oral
  • anticancer drugs [139]. They can also be targeted to specific tissues through surface modification with different ligands [169][170]. Azmin et al. reviewed MB dynamics and the physical principles behind MBs, providing a theoretical basis for the development of MB-based theranostic systems [171]. Some
PDF
Album
Review
Published 11 Aug 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • structure had a higher motion speed and could effectively suppress lateral drifting motion. In addition, MNRs with a hollow tubular structure [29], which could facilitate drug delivery and realize effective treatment of cancer by loading and releasing anticancer drugs, were proposed and fabricated. At the
PDF
Album
Review
Published 19 Jul 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • discoveries regarding the surface-expressed receptors and their intracellular molecular pathways have been made during the last decade, which improved the design of targeted anticancer nanomedicines and the targeting of specific tumor types. No doubt that the advances will further progress to the application
  • alternatives using NDDSs [1]. Literature data points to combinatorial therapy, coadministration, and codelivery of agents by nanomedicines as a successful approach to bypass signaling inhibition, combat anticancer drug resistance, and increase the efficacy of the clinical treatment. Further advances in
  • sensitivity of the cancer cells against the antineoplastic agents, (ii) functionalized nanoscale systems carrying anticancer agents that target multiple receptors, or (iii) other multifunctional approaches involving gene therapy for receptor knockdown administered with anticancer agents in targeted
PDF
Album
Review
Published 29 Apr 2021
Other Beilstein-Institut Open Science Activities