Search results

Search for "bandgap energy" in Full Text gives 54 result(s) in Beilstein Journal of Nanotechnology.

An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications

  • Elnaz Akbari,
  • Vijay K. Arora,
  • Aria Enzevaee,
  • Mohamad. T. Ahmadi,
  • Mehdi Saeidmanesh,
  • Mohsen Khaledian,
  • Hediyeh Karimi and
  • Rubiyah Yusof

Beilstein J. Nanotechnol. 2014, 5, 726–734, doi:10.3762/bjnano.5.85

Graphical Abstract
  • zero bandgap energy, graphene has a high electron mobility at room temperature. The electron transfer in graphene is 100 times faster than that in silicon. A zero band gap with massless Dirac fermions makes graphene theoretically lossless, making it a perfect two-dimensional (2D) semiconductor [19][20
PDF
Album
Full Research Paper
Published 28 May 2014

Template based precursor route for the synthesis of CuInSe2 nanorod arrays for potential solar cell applications

  • Mikhail Pashchanka,
  • Jonas Bang,
  • Niklas S. A. Gora,
  • Ildiko Balog,
  • Rudolf C. Hoffmann and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2013, 4, 868–874, doi:10.3762/bjnano.4.98

Graphical Abstract
  • range and a part of the near infrared diapason as well (with a threshold that corresponds to a bandgap energy of 1.03 eV). A future challenge would be the incorporation of the 3D aligned CISe nanorod arrays as absorber material in a solar cell. Obviously, one of the main challenges towards this end is
PDF
Album
Full Research Paper
Published 10 Dec 2013

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

  • Alex Henning,
  • Gino Günzburger,
  • Res Jöhr,
  • Yossi Rosenwaks,
  • Biljana Bozic-Weber,
  • Catherine E. Housecroft,
  • Edwin C. Constable,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2013, 4, 418–428, doi:10.3762/bjnano.4.49

Graphical Abstract
  • the incident light wavelength approaches the bandgap energy of TiO2 higher SPVs result leading to steeper slopes of the SPV-versus-intensity curves. The SPV is proportional to the number of photogenerated charge carriers. It is evident from Figure 6a that more electrons are generated with higher
  • material [48], α is therefore expected to show a quadratic dependence on the illumination wavelength for energies just above the bandgap. Figure 5a presents an SPS measurement taken on a cluster of sintered anatase particles showing a quadratic dependence on the wavelength. By linear fitting, a bandgap
  • energy of Eg = 3.2 eV was extracted using Equation 1, assuming a phonon energy Ep ≈ 0. Figure 5b depicts the SPV of bare TiO2 as a function of the light intensity for super-bandgap illumination with a wavelength of 380 nm. The negative SPV indicates an n-type behavior of the material. The SPV exhibits a
PDF
Album
Full Research Paper
Published 01 Jul 2013

Precursor concentration and temperature controlled formation of polyvinyl alcohol-capped CdSe-quantum dots

  • Chetan P. Shah,
  • Madhabchandra Rath,
  • Manmohan Kumar and
  • Parma N. Bajaj

Beilstein J. Nanotechnol. 2010, 1, 119–127, doi:10.3762/bjnano.1.14

Graphical Abstract
  • the effective mass of the hole, d is the size of the nanoparticle, and h is the Planck constant. For CdSe nanoparticles, me* and mh* are 0.13 m0 and 0.45m0, respectively [27], and Eg(0) is 1.7 eV [28]. Therefore, the size of CdSe nanoparticles is given by Equation 2. where d is in nm. The bandgap
  • energy was obtained from the absorption spectrum. The sizes of the CdSe nanoparticles determined, using the above equation, for various concentrations of the precursors, by keeping the concentration of Cd(OAc)2 fixed, and varying the concentration of Na2SeSO3, and vice versa, are listed in Table 1. The
PDF
Album
Full Research Paper
Published 07 Dec 2010
Other Beilstein-Institut Open Science Activities