Search results

Search for "biomass" in Full Text gives 35 result(s) in Beilstein Journal of Nanotechnology.

Development of adsorptive membranes by confinement of activated biochar into electrospun nanofibers

  • Mehrdad Taheran,
  • Mitra Naghdi,
  • Satinder K. Brar,
  • Emile Knystautas,
  • Mausam Verma,
  • Rao. Y. Surampalli and
  • Jose. R. Valero

Beilstein J. Nanotechnol. 2016, 7, 1556–1563, doi:10.3762/bjnano.7.149

Graphical Abstract
  • purposes, which produces lots of biomass. Therefore, low cost and high availability make pinewood biomass a promising source for the production of biochar, which is also a value addition strategy for wooden residues [22]. In this study, activated pinewood biochar, with its interesting properties, was
PDF
Album
Full Research Paper
Published 01 Nov 2016

Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica

  • Liz M. Rösken,
  • Felix Cappel,
  • Susanne Körsten,
  • Christian B. Fischer,
  • Andreas Schönleber,
  • Sander van Smaalen,
  • Stefan Geimer,
  • Christian Beresko,
  • Georg Ankerhold and
  • Stefan Wehner

Beilstein J. Nanotechnol. 2016, 7, 312–327, doi:10.3762/bjnano.7.30

Graphical Abstract
  • concentration of gold ions in the culture the larger is the amount of gold found in the biomass. From the average size of nanoparticles determined by X-ray powder diffraction (XRD) and the number of nanoparticles recorded by transmission electron microscopy (TEM) the average uptake of the cyanobacteria can be
  • and separating the biomass from the supernatant after centrifugation. Samples for XRD, TEM and LIBS are based on the biomass separated from the aliquot; see Supporting Information File 1 for a detailed description of these processes. X-ray powder diffraction For XRD the washed biomass was placed on a
  • detail elsewhere [49][50][51][52][53][54]. For LIBS measurements, the separated biomass was dried and placed without any further processing in the apparatus. A LIBS micro-plasma was produced with a homemade setup from commercially available components, see Supporting Information File 2 for a scheme of
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • high. However, costs are decreasing, allowing these technologies to be considered in the near future when the price of fossil fuels increase due to their scarcity. Among all of the renewable energy resources available, including hydroelectricity, geothermal energy, wind energy, biomass and others
PDF
Album
Review
Published 01 Feb 2016

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • reaction medium [104]. Renewable feedstock: Increasing the share of renewable sources either for raw material and energy are very important. The largest renewable source for energy is biomass [129]. There are also many examples for using renewable material in synthesis of NPs including cellulose, chitin
PDF
Album
Review
Published 10 Dec 2015

Materials for sustainable energy production, storage, and conversion

  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2015, 6, 1601–1602, doi:10.3762/bjnano.6.163

Graphical Abstract
  • solar, wind, biomass, geothermal, and water power. Hence, these factors have driven the intensified and ever-growing interest in the fields of energy harvesting and storage seen during the past two decades. The harvesting of light is still a challenge, and solutions are needed to achieve both high
PDF
Editorial
Published 23 Jul 2015

Functionalization of α-synuclein fibrils

  • Simona Povilonienė,
  • Vida Časaitė,
  • Virginijus Bukauskas,
  • Arūnas Šetkus,
  • Juozas Staniulis and
  • Rolandas Meškys

Beilstein J. Nanotechnol. 2015, 6, 124–133, doi:10.3762/bjnano.6.12

Graphical Abstract
  • containing ampicillin (50 μg/mL). The cells were grown at 37 °C until the OD600 reached 0.8; the protein expression was induced by the addition of 0.2 mM IPTG, and cell growth continued at 30 °C for 18 h. The biomass was collected by centrifugation at 4000g and resuspended in 50 mM Tris-HCl buffer (pH 8.0
PDF
Album
Full Research Paper
Published 12 Jan 2015

Liquid fuel cells

  • Grigorii L. Soloveichik

Beilstein J. Nanotechnol. 2014, 5, 1399–1418, doi:10.3762/bjnano.5.153

Graphical Abstract
  • as a solution. Water is a natural solvent for organic and inorganic fuels, because it is produced at the cathode side, and it is the ion conducting medium in the majority of ion exchange membranes. Some of the proposed organic fuels are produced from renewable biomass, e.g., ethanol by fermentation
PDF
Album
Review
Published 29 Aug 2014

Purification of ethanol for highly sensitive self-assembly experiments

  • Kathrin Barbe,
  • Martin Kind,
  • Christian Pfeiffer and
  • Andreas Terfort

Beilstein J. Nanotechnol. 2014, 5, 1254–1260, doi:10.3762/bjnano.5.139

Graphical Abstract
  • remain within the monolayer [4]. On the other hand, ethanol is typically produced by fermentation of biomass [22]. In this process, driven by yeasts like Saccharomyces cerevisiae, a plethora of sulfur-containing compounds is produced, among them hydrogen sulfide, dimethyl sulfoxide, short-chained
PDF
Album
Supp Info
Full Research Paper
Published 12 Aug 2014

Magnesiothermic conversion of the silica-mineralizing golden algae Mallomonas caudata and Synura petersenii to elemental silicon with high geometric precision

  • Janina Petrack,
  • Steffen Jost,
  • Jens Boenigk and
  • Matthias Epple

Beilstein J. Nanotechnol. 2014, 5, 554–560, doi:10.3762/bjnano.5.65

Graphical Abstract
  • -F. Both strains were taken from the culture collection at the University of Duisburg-Essen (Department of Biodiversity). All strains were grown on modified WC medium at 15 °C and 90 µE [26]. In order to obtain a sufficiently high biomass for further analysis, the strains were serially transferred to
  • medium. After approximately ten more days, the culture volume was again doubled and after another ten days further increased to a final volume of 400 mL by adding fresh medium. After another ten days the biomass of 5 to 10 flasks was pooled prior to further analyses in order to obtain a sufficiently high
  • yield of biomass. The golden algae were collected by filtration. The yield was dependent on the density of the biomass and varied strongly. Thus, the yield for Synura petersenii was between 2 and 5 mg per L culture medium. The yield for Mallomonas caudata was significantly lower with a maximum of 1 mg
PDF
Album
Full Research Paper
Published 30 Apr 2014

Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

  • Shadab Ali Khan,
  • Sanjay Gambhir and
  • Absar Ahmad

Beilstein J. Nanotechnol. 2014, 5, 249–257, doi:10.3762/bjnano.5.27

Graphical Abstract
  • secreted in the solution by the fungus Humicola sp. in response to the stress conditions encountered by the fungus in the presence of GdCl3. Some of these amino acid residues constitute the protein layer, which can cap the nanoparticles. As soon as GdCl3 gets dissolved in water along with fungal biomass
  • render it more potent in killing tumor/cancer cells. We believe that this work could pave the way for nanosized drug delivery applications for the treatment of cancer. UV–vis spectrum of biosynthesized gadolinium oxide nanoparticles solution after 96 h of reaction with the fungal biomass. (A) TEM
  • micrograph recorded from drop-cast films of Gd2O3 nanoparticle solution formed by the reaction of GdCl3 with the fungal biomass of Humicola sp. for 96 h. (B) Particle size distribution determined from TEM microgaph. (C) HR-TEM image of Gd2O3 nanoparticles showing inter planar distance. (D) Selected area
PDF
Album
Full Research Paper
Published 07 Mar 2014
Other Beilstein-Institut Open Science Activities