Search results

Search for "biomaterials" in Full Text gives 98 result(s) in Beilstein Journal of Nanotechnology.

In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110) in bulk water

  • Giulia Serrano,
  • Beatrice Bonanni,
  • Tomasz Kosmala,
  • Marco Di Giovannantonio,
  • Ulrike Diebold,
  • Klaus Wandelt and
  • Claudio Goletti

Beilstein J. Nanotechnol. 2015, 6, 438–443, doi:10.3762/bjnano.6.44

Graphical Abstract
  • application of Ti-based biomaterials, since the augmented wettability would enhance the interaction between the implant surface and the biological environment. In this paper we present an in situ STM investigation of a Ca overlayer thermally grown in UHV on the TiO2(110) rutile surface and then immersed in
PDF
Album
Full Research Paper
Published 12 Feb 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • applied [4][5][6][7]. To date, various sophisticated tissue-engineering structures that mimic the extracellular matrix (ECM) have been proposed, which aim to induce the highly desirable in situ endothelialization of vascular biomaterials while minimizing thrombogenicity and inflammation [8][9][10]. In the
  • physical and mechanical stability, while the surface should provide high affinity with cells. In order to combine both prerequisites in one biomaterial, a common approach is to use synthetic biomaterials with adequate bulk properties and improve the surface functionalities by applying surface modification
  • the systems. All the above findings strongly indicate the positive influence of the plasma treatment over the cell adhesion and proliferation. Conclusion Plasma-assisted treatment of the surface of biomaterials has proven to be a straightforward and versatile method for modifying the chemical
PDF
Album
Full Research Paper
Published 22 Jan 2015

Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces

  • Miao Yu,
  • Nico Strohmeyer,
  • Jinghe Wang,
  • Daniel J. Müller and
  • Jonne Helenius

Beilstein J. Nanotechnol. 2015, 6, 157–166, doi:10.3762/bjnano.6.15

Graphical Abstract
  • cantilever Before the PDMS or glass surface was coated with proteins, the Petri dish containing the PDMS masks was washed with ethanol and ultrapure water to remove any residue. After drying the Petri dishes, 16 µL solutions of 160 µg/mL collagen I (Inamed Biomaterials), 50 µg/mL fibronectin (Merck), 50 µg
PDF
Album
Full Research Paper
Published 14 Jan 2015

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • Laboratory for Neutron Scattering, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland Technische Universität München, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), 85748 Garching, Germany Department of Biomaterials, Max Planck Institute of Colloids & Interfaces Science Park Golm, 14424
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • applications due to their unique physicochemical properties including high hydrophobicity, heat and electrical insulation, resistance to oxidation, and hydrogen storage capacity. They are also valued for their possible medical and biomedical applications including drug delivery, use in biomaterials, and
  • summarized first, then in vitro and in vivo studies of their toxicity are addressed. Finally, the investigations utilizing BNNTs in applications such as drug delivery, biomaterials preparation, biosensors, hydrogen storage, and neutron capture therapy are summarized by giving examples from the literature
  • biomaterials was investigated. In one study, the BNNTs were used in polylactide-polycaprolactone (PLC) copolymer as additives to improve the properties of the polymer as an orthopedic implant [75]. With the addition of BNNTs, a 1370% increase in the mechanical strength of the polymer was observed. The reason
PDF
Album
Review
Published 08 Jan 2015

Morphology, structural properties and reducibility of size-selected CeO2−x nanoparticle films

  • Maria Chiara Spadaro,
  • Sergio D’Addato,
  • Gabriele Gasperi,
  • Francesco Benedetti,
  • Paola Luches,
  • Vincenzo Grillo,
  • Giovanni Bertoni and
  • Sergio Valeri

Beilstein J. Nanotechnol. 2015, 6, 60–67, doi:10.3762/bjnano.6.7

Graphical Abstract
  • “Reducible oxide chemistry, structure and functions”, and by a grant from the University of Modena and Reggio Emilia entitled “The role of cerium oxidation state in bioactive glasses used as biomaterials of 3rd generation”.
PDF
Album
Full Research Paper
Published 07 Jan 2015

Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

  • Marcela Elisabeta Barbinta-Patrascu,
  • Stefan Marian Iordache,
  • Ana Maria Iordache,
  • Nicoleta Badea and
  • Camelia Ungureanu

Beilstein J. Nanotechnol. 2014, 5, 2316–2325, doi:10.3762/bjnano.5.240

Graphical Abstract
  • research stage with the design, preparation and characterization techniques needed for monitoring these biomaterials, and presents new interdisciplinary aspects involving concepts of biochemistry, biophysics, microbiology, nanotechnology, colloid and supramolecular chemistry, and materials science. The
PDF
Album
Full Research Paper
Published 02 Dec 2014

Effect of silver nanoparticles on human mesenchymal stem cell differentiation

  • Christina Sengstock,
  • Jörg Diendorf,
  • Matthias Epple,
  • Thomas A. Schildhauer and
  • Manfred Köller

Beilstein J. Nanotechnol. 2014, 5, 2058–2069, doi:10.3762/bjnano.5.214

Graphical Abstract
  • developed to enhance the diagnoses and treatment of diseases through the improved delivery of drugs, biopharmaceutical molecules and imaging agents to target cells at the sites of disease as well as through the surface treatment of biomaterials, such as implants. Ag-NP have a high degree of
PDF
Album
Full Research Paper
Published 10 Nov 2014

Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions

  • Anastasios Stergiou,
  • Georgia Pagona and
  • Nikos Tagmatarchis

Beilstein J. Nanotechnol. 2014, 5, 1580–1589, doi:10.3762/bjnano.5.170

Graphical Abstract
  • , although graphene-based biomaterials are out of the scope of this mini-review, GO has been covalently functionalized with peptides, antibodies and other biomolecules for applications in diagnostics, novel therapeutic approaches and near infrared (NIR) photo-thermal therapies [53]. A representative work
PDF
Album
Review
Published 18 Sep 2014

Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials

  • Ahmed Salama,
  • Mike Neumann,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2014, 5, 1553–1568, doi:10.3762/bjnano.5.167

Graphical Abstract
  • increases as the initial cellulose concentration in the reaction mixture increases. As stated in the introduction, calcium phosphate cellulose hybrid materials could be interesting biomaterials. Preliminary attempts to study the biocompatibility with MC3T3-E1 pre-osteoblasts, however, only provided
  • inorganic biomaterials such as calcium phosphate, possibly for toxicity concerns [66][67]. The only examples the authors are currently aware of is an interesting study by de Zea Bermudez and colleagues, who have reported strong effects on the morphology of calcium carbonate but, interestingly, not on the
  • are also viable for biomaterials development. Conclusion The current study presents a new approach towards true carbohydrate/calcium phosphate hybrid materials with a highly ordered, uniform, and chemically well defined mesostructure. The study has three key findings: (i) the use of suitable ILs
PDF
Album
Full Research Paper
Published 16 Sep 2014

Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

  • Dickson Joseph,
  • Nisha Tyagi,
  • Christian Geckeler and
  • Kurt E.Geckeler

Beilstein J. Nanotechnol. 2014, 5, 1452–1462, doi:10.3762/bjnano.5.158

Graphical Abstract
  • ; protein; zeta potential; Introduction Blending nanotechnology with biomaterials has received keen attention due to a growing need to develop environmentally benign technologies by applying green chemistry principles towards greener nanomaterial syntheses. For metal or metal oxide nanoparticles targeted
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2014

Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions

  • Seonki Hong,
  • Hyukjin Lee and
  • Haeshin Lee

Beilstein J. Nanotechnol. 2014, 5, 887–894, doi:10.3762/bjnano.5.101

Graphical Abstract
  • properties of bulk hydrogels. Keywords: catechols; hydrogels; poly(ethylene glycol)s; quinone tanning; Introduction Water-resistant adhesives secreted by marine mussels, stiff cuticles synthesized by insects, and sharp beaks found in squids appear to be drastically different biomaterials (Figure 1a–c) [1
  • ). This result strongly suggests that one can control physicochemical properties of a wide variety of PEG-containing biomaterials by designing effective conjugation chemistry. We chose PEG hydrogels as an example. Effect of the amine group in PEG gelation I: mechanical properties of hydrogels To explore
  • chemically efficient process compared to catechol–catechol tanning. Therefore, we understand that the amine–catechol tanning process has been chosen in nature to produce stiff biomaterials for the various invertebrates shown in Figure 1. Effect of the amine group in PEG gelation II: differences in gelation
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2014

Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

  • Jinzhang Liu,
  • Marco Notarianni,
  • Llew Rintoul and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 485–493, doi:10.3762/bjnano.5.56

Graphical Abstract
  • . This low temperature process opens the way to the encapsulation of nanoparticles made of polymers and even biomaterials, which would degrade at high temperature, creating a new platform for nano-devices, nano-detectors, and applications in nano-medicine. Experimental ZnO nanorods were grown at 90 °C
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2014

Morphological characterization of fullerene–androsterone conjugates

  • Alberto Ruiz,
  • Margarita Suárez,
  • Nazario Martin,
  • Fernando Albericio and
  • Hortensia Rodríguez

Beilstein J. Nanotechnol. 2014, 5, 374–379, doi:10.3762/bjnano.5.43

Graphical Abstract
  • Madrid, Spain Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028-Barcelona, Spain Centre on Bioengineering, Biomaterials and Nanomedicine, PCB, 08028-Barcelona, Spain Department of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain School of Chemistry
PDF
Album
Supp Info
Full Research Paper
Published 28 Mar 2014

Exploring the complex mechanical properties of xanthan scaffolds by AFM-based force spectroscopy

  • Hao Liang,
  • Guanghong Zeng,
  • Yinli Li,
  • Shuai Zhang,
  • Huiling Zhao,
  • Lijun Guo,
  • Bo Liu and
  • Mingdong Dong

Beilstein J. Nanotechnol. 2014, 5, 365–373, doi:10.3762/bjnano.5.42

Graphical Abstract
  • ) [11], and atomic force microscopy (AFM) [12][13][14], has been used to explore the structures and properties of biopolymer scaffolds. Owing to its high resolution and versatility, AFM stands out of various tools and has been extensively employed in the study of biomaterials. For example, various
PDF
Album
Full Research Paper
Published 27 Mar 2014

Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating

  • Tingjun Lei,
  • Alicia Fernandez-Fernandez,
  • Romila Manchanda,
  • Yen-Chih Huang and
  • Anthony J. McGoron

Beilstein J. Nanotechnol. 2014, 5, 313–322, doi:10.3762/bjnano.5.35

Graphical Abstract
  • , Nova Southeastern University, 3200 S. University Dr., Fort Lauderdale, FL 33328, USA Department of Basic and Applied Sciences, Galgotias University, UP, 201308, India 10.3762/bjnano.5.35 Abstract Background: In the past decade, researchers have focused on developing new biomaterials for cancer therapy
PDF
Album
Supp Info
Full Research Paper
Published 18 Mar 2014

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
  • , and for seeing heterogeneities at the nanoscale, as well as local effects which occur due to a vertical polymer confinement [5]. The time dimension is of particular use in determining the viscoelastic response, which cannot be neglected in analysis of many polymers, biomaterials, and other soft matter
PDF
Album
Review
Published 29 Nov 2013

Atomic force microscopy recognition of protein A on Staphylococcus aureus cell surfaces by labelling with IgG–Au conjugates

  • Elena B. Tatlybaeva,
  • Hike N. Nikiyan,
  • Alexey S. Vasilchenko and
  • Dmitri G. Deryabin

Beilstein J. Nanotechnol. 2013, 4, 743–749, doi:10.3762/bjnano.4.84

Graphical Abstract
  • , even though the use of AFM is growing rapidly in microbiology and a number of different AFM techniques enable the study of biomaterials [4][20], gold labelling is still not a routine procedure. We are sure that the development of methods of nanogold synthesis with precise dimensional characteristics
PDF
Album
Full Research Paper
Published 11 Nov 2013

3D nano-structures for laser nano-manipulation

  • Gediminas Seniutinas,
  • Lorenzo Rosa,
  • Gediminas Gervinskas,
  • Etienne Brasselet and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2013, 4, 534–541, doi:10.3762/bjnano.4.62

Graphical Abstract
  • ; Introduction Optical trapping is a fundamental experimental technique for physics and biology, which allows to precisely control and position micrometer-sized objects such as dielectric parts for nano-assembly, and biomaterials such as cells and bacteria, through the use of gradient forces, which originate
  • later even objects of single-protein size [8]. When nanometer-sized objects are handled by this technique, the trapping force weakens and the trap loses stability due to Brownian motion. This forces the laser intensity to be increased up to the point where damage occurs to the delicate biomaterials
PDF
Album
Full Research Paper
Published 17 Sep 2013

Nanoglasses: a new kind of noncrystalline materials

  • Herbert Gleiter

Beilstein J. Nanotechnol. 2013, 4, 517–533, doi:10.3762/bjnano.4.61

Graphical Abstract
  • nanoglasses Due to their high strength, large elastic limit and excellent corrosion resistance, metallic glasses are considered to be promising biomaterials. As one of the most widely used implantable metals, titanium and its alloys have attracted considerable scientific and technological interest. In fact
PDF
Album
Review
Published 13 Sep 2013

Molecular dynamics simulations of mechanical failure in polymorphic arrangements of amyloid fibrils containing structural defects

  • Hlengisizwe Ndlovu,
  • Alison E. Ashcroft,
  • Sheena E. Radford and
  • Sarah A. Harris

Beilstein J. Nanotechnol. 2013, 4, 429–440, doi:10.3762/bjnano.4.50

Graphical Abstract
  • considered when quantifying the mechanical properties of amyloid fibres containing defects. Keywords: amyloid; fibril fragmentation; steered molecular dynamics (SMD); structural defects; Introduction Amyloid fibrils are biomaterials that are commonly associated with human disease [1]. Over recent years
PDF
Album
Full Research Paper
Published 04 Jul 2013

High-resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope

  • Mark Cronin-Golomb and
  • Ozgur Sahin

Beilstein J. Nanotechnol. 2013, 4, 243–248, doi:10.3762/bjnano.4.25

Graphical Abstract
  • force–distance curves to parameters representing the material properties. Although contact-mechanics models can be used for a wide variety of polymer composites, block-copolymers, and biomaterials [27][28][29][30][31][32][33][34], these models are not applicable to materials with complex geometries. For
PDF
Album
Full Research Paper
Published 05 Apr 2013

Growth behaviour and mechanical properties of PLL/HA multilayer films studied by AFM

  • Cagri Üzüm,
  • Johannes Hellwig,
  • Narayanan Madaboosi,
  • Dmitry Volodkin and
  • Regine von Klitzing

Beilstein J. Nanotechnol. 2012, 3, 778–788, doi:10.3762/bjnano.3.87

Graphical Abstract
  • substrate into/with the corresponding polyelectrolyte solutions. Potential applications of PEMs (e.g., filtration, paper making and biomaterials) require control of their adhesive behaviour by tuning the elastic/viscoelastic properties [3][4][5]. For example, the adsorption behaviour of proteins and cells
PDF
Album
Full Research Paper
Published 21 Nov 2012
Other Beilstein-Institut Open Science Activities