Search results

Search for "biomimetic" in Full Text gives 108 result(s) in Beilstein Journal of Nanotechnology.

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • could function under red-to-NIR irradiation [151]. All these studies provide new insight into using plasmonic nanoarchitectures for photocatalysis applications in the future. Similarly, biomimetic assembly methods can also be used to arrange plasmonic metals (Au and Ag) with molecular-level precision to
PDF
Album
Review
Published 19 Feb 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • interface, many defects are easily aggregated, causing the energy levels to be quasi-continuous for the ohmic contact. Besides, the biomimetic or bioinspired strategy showed the most interesting results. Zhou et al. reported a light-harvesting antenna-network inspired polymeric semiconductor-based hybrid
  • photocatalytic efficiency [90][91][92][93][94]. Besides, biomimetic or bioinspired strategies for the synthesis of semiconductor materials represents a significant advancement in the development of high-efficiency and cost-effective visible-light photocatalysts for solar energy conversion [65][66][67]. Given the
PDF
Album
Review
Published 04 Jan 2018

Collembola cuticles and the three-phase line tension

  • Håkon Gundersen,
  • Hans Petter Leinaas and
  • Christian Thaulow

Beilstein J. Nanotechnol. 2017, 8, 1714–1722, doi:10.3762/bjnano.8.172

Graphical Abstract
  • in functional surfaces with effects like self-cleaning, drag reduction and air retention [10][11][12]. The field of superhydrophobic surfaces has made extensive use of biomimetic methods, where the imitation of natural surfaces provides the basis for artificial surfaces [9][13][14]. The exact nature
PDF
Album
Full Research Paper
Published 18 Aug 2017

Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

  • Markus Moosmann,
  • Thomas Schimmel,
  • Wilhelm Barthlott and
  • Matthias Mail

Beilstein J. Nanotechnol. 2017, 8, 1671–1679, doi:10.3762/bjnano.8.167

Graphical Abstract
  • of increasing interest for technical applications. Persistent air layers (the Salvinia effect) are known from biological species, for example, the floating fern Salvinia or the backswimmer Notonecta. The use of this concept opens up new possibilities for biomimetic technical applications in the
  • sensory systems. Biological surfaces are the basis of the discovery and are models for the development of biomimetic surfaces. The conquest of land some 450 million years ago led to the evolution of an almost endless variety of surface structures and functionalities in plants and animals [3]. One of the
  • ultimately expand the portfolio of AFM applications. They allow the analysis of various micrometer-structured air-retaining surfaces with regards to geometry, stability and depth of the maintained air layer. Since biomimetic air-retaining surfaces show a great economic potential, they have gained interest in
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2017

Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

  • Benjamin Baumgärtner,
  • Hendrik Möller,
  • Thomas Neumann and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2017, 8, 1145–1155, doi:10.3762/bjnano.8.116

Graphical Abstract
  • linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon
  • fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes. Keywords: biomimetic silicification; carbon fiber; self-assembly; silica nanotubes; sol–gel process
  • addition, amines and polyamines can facilitate the silicic acid polycondensation [11][12][13]. A biomimetic system, which employs linear poly(ethylenimine) (LPEI) and was introduced recently by Jin et al., is capable of both catalyzing silicification and directing the silica morphology [14][15][16]. LPEI
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2017

Bio-inspired micro-to-nanoporous polymers with tunable stiffness

  • Julia Syurik,
  • Ruth Schwaiger,
  • Prerna Sudera,
  • Stephan Weyand,
  • Siegbert Johnsen,
  • Gabriele Wiegand and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 906–914, doi:10.3762/bjnano.8.92

Graphical Abstract
  • a modified, biomimetic investment-casting manufacturing technique [13]. The protective peel was transformed into amorphous silica by bio-templating down to the nanometre-scale, creating a biomorphous inorganic and, therefore, temperature-resistant gradient-foam material . It is well known that
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2017

Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization

  • Mohamed Hamed Misbah,
  • Mercedes Santos,
  • Luis Quintanilla,
  • Christina Günter,
  • Matilde Alonso,
  • Andreas Taubert and
  • José Carlos Rodríguez-Cabello

Beilstein J. Nanotechnol. 2017, 8, 772–783, doi:10.3762/bjnano.8.80

Graphical Abstract
  • functional performance that can be used for different applications, such as tissue engineering [1]. This perspective can be applied in one of the hottest current research fields, namely control of the formation of calcium phosphate (CP) nanostructures for the generation of biomimetic hybrid materials. Among
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2017

Phospholipid arrays on porous polymer coatings generated by micro-contact spotting

  • Sylwia Sekula-Neuner,
  • Monica de Freitas,
  • Lea-Marie Tröster,
  • Tobias Jochum,
  • Pavel A. Levkin,
  • Michael Hirtz and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2017, 8, 715–722, doi:10.3762/bjnano.8.75

Graphical Abstract
  • arrays we selected lipid–protein pairs applied in previous settings: Biotin-Cap-PE and streptavidin labeled with Cy3 dye (STV-Cy3) as a simple protein model; and DNP-cap-PE with anti-DNP IgE as a model for allergen/antibody recognition. These interactions are well-characterized for biomimetic lipid
PDF
Album
Full Research Paper
Published 27 Mar 2017

Biological and biomimetic materials and surfaces

  • Stanislav Gorb and
  • Thomas Speck

Beilstein J. Nanotechnol. 2017, 8, 403–407, doi:10.3762/bjnano.8.42

Graphical Abstract
  • some biomimetic products, for example, the facade paint Lotusan® produced by Sto SEA Pte. [7] or the product Tegotop® 210 from Evonik Industries AG. The products are sold under the brand name Lotus-Effect® which has become a near synonym for functional, water-repellent surfaces in general. Without
  • exaggeration one can say that Lotus-Effect® surfaces, together with fasteners inspired by gecko attachment structures, can be considered as “flagships” of contemporary surface-related biomimetic research. Still today questions related to these effects are the topic of novel state-of-the-art studies in the
  • Technology (KIT) [8]. The biomimetic potential of this effect was first understood in the early 2000s by Wilhelm Barthlott. The swimming ferns of the genus Salvinia, but also other swimming and diving organisms (e.g., some spider and bug species as well as a few birds and mammals), typically possess double
PDF
Editorial
Published 08 Feb 2017

Innovations from the “ivory tower”: Wilhelm Barthlott and the paradigm shift in surface science

  • Christoph Neinhuis

Beilstein J. Nanotechnol. 2017, 8, 394–402, doi:10.3762/bjnano.8.41

Graphical Abstract
  • components based on tree growth [48] –, biomimetic approaches are still regarded as exceptional and not suitable to serve as examples for a general approach. Although at least some of them, such as Claus Mattheck´s computer-aided optimisation and other methods, have been widely applied in engineering
PDF
Album
Commentary
Published 08 Feb 2017

Impact of surface wettability on S-layer recrystallization: a real-time characterization by QCM-D

  • Jagoba Iturri,
  • Ana C. Vianna,
  • Alberto Moreno-Cencerrado,
  • Dietmar Pum,
  • Uwe B. Sleytr and
  • José Luis Toca-Herrera

Beilstein J. Nanotechnol. 2017, 8, 91–98, doi:10.3762/bjnano.8.10

Graphical Abstract
  • of atomic force microscopy for topographical analysis of the resulting crystal-like films. The results are compared with the biomimetic case found in bacteria represented by the interaction of SbpA with a secondary cell-wall polymer (SCWP), which specifically recognizes the N-terminal region of the S
PDF
Album
Full Research Paper
Published 11 Jan 2017

Structural and tribometric characterization of biomimetically inspired synthetic "insect adhesives"

  • Matthias W. Speidel,
  • Malte Kleemeier,
  • Andreas Hartwig,
  • Klaus Rischka,
  • Angelika Ellermann,
  • Rolf Daniels and
  • Oliver Betz

Beilstein J. Nanotechnol. 2017, 8, 45–63, doi:10.3762/bjnano.8.6

Graphical Abstract
  • droplet distribution. The purpose of our contribution is not to present completely new kinds of emulsion, but to use emulsions in a biomimetic context. Due to the small amounts of attainable natural tarsal secretions, it is hardly possible to determine their droplet sizes and other emulsion parameters
  • . Therefore, the artificial emulsions prepared and used in the present contribution are used as rough models to indirectly deduce how the biological adhesives are probably structured and how they perform. This is the reason why we follow a typical process sequence of biomimetic research [32], i.e., we intend
  • experimental approaches, our "biomimetic approach" will help to (i) understand possible structural and functional principles that make up such adhesives and (ii) develop technical protocols how to test and mimick them. On a long term perspective, such approaches will help to technically utilize insect tarsal
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2017

When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

  • Niall Crawford,
  • Thomas Endlein,
  • Jonathan T. Pham,
  • Mathis Riehle and
  • W. Jon P. Barnes

Beilstein J. Nanotechnol. 2016, 7, 2116–2131, doi:10.3762/bjnano.7.201

Graphical Abstract
  • [52], and the adhesive setae of geckos [53] the toe pads of tree frogs exhibit significant biomimetic potential to advance the technology of surface engineering. This is because they combine high friction under wet conditions [3] with self-cleaning [33]. Their main applications will likely be in the
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2016

The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®

  • Florian Antony,
  • Rainer Grießhammer,
  • Thomas Speck and
  • Olga Speck

Beilstein J. Nanotechnol. 2016, 7, 2100–2115, doi:10.3762/bjnano.7.200

Graphical Abstract
  • discussed among scientists, business leaders, politicians and those responsible for project funding. The objective of this paper is to contribute to this controversial debate by presenting the sustainability assessment of one of the most well-known and most successful biomimetic products: the façade paint
  • Lotusan®. Results: As a first step it has been examined and verified that the façade paint Lotusan® is correctly defined as a biomimetic product. Secondly, Lotusan® has been assessed and compared to a conventional façade paint within the course of a detailed product sustainability assessment (PROSA). For
  • paints arise from the respective service life, which are presented in terms of four scenario analyses. Conclusion: In summary, the biomimetic façade paint Lotusan® has been identified as a cost-effective and at the same time resource-saving product. Based on the underlying data and assumptions it could
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2016

3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate

  • Aleksey A. Egorov,
  • Alexander Yu. Fedotov,
  • Anton V. Mironov,
  • Vladimir S. Komlev,
  • Vladimir K. Popov and
  • Yury V. Zobkov

Beilstein J. Nanotechnol. 2016, 7, 1794–1799, doi:10.3762/bjnano.7.172

Graphical Abstract
  • biomimetic approach in which 3D printing of composite structures involves a chemical interaction of the polymer slurry with a liquid “ink”, leading to in situ formation of a CP phase in the final product. It is well known that alginate allows precipitation of inorganic phases within its macromolecular
  • printed samples can be adjusted further by chemical post-treatment. For instance, the hydrolysis of DCPD might lead to the development of an octacalcium phosphate phase and an adhesive effect between particles could take place [17]. Conclusion We propose a new “biomimetic + 3D printing” approach for
PDF
Album
Letter
Published 21 Nov 2016

Biomechanics of selected arborescent and shrubby monocotyledons

  • Tom Masselter,
  • Tobias Haushahn,
  • Samuel Fink and
  • Thomas Speck

Beilstein J. Nanotechnol. 2016, 7, 1602–1619, doi:10.3762/bjnano.7.154

Graphical Abstract
  • ). This assumption is verified by the good accordance of the calculated values of the axial Young’s modulus via the Voigt model. The higher strength of fibrous bundles in the periphery is also vital for the support of (peripherally developing) branches in D. marginata. Biomimetic approaches and outlook
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2016

Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

  • Tudor Braniste,
  • Ion Tiginyanu,
  • Tibor Horvath,
  • Simion Raevschi,
  • Serghei Cebotari,
  • Marco Lux,
  • Axel Haverich and
  • Andres Hilfiker

Beilstein J. Nanotechnol. 2016, 7, 1330–1337, doi:10.3762/bjnano.7.124

Graphical Abstract
  • of premature tissue damage and dispensing of medications. Nature supplies many examples of biomimetic materials in the form of organic/inorganic components such as bone, teeth, and muscle. Based on biological examples, new and innovative biological materials can be designed through self-organization
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2016

Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

  • Matthias Bieligmeyer,
  • Franjo Artukovic,
  • Stephan Nussberger,
  • Thomas Hirth,
  • Thomas Schiestel and
  • Michaela Müller

Beilstein J. Nanotechnol. 2016, 7, 881–892, doi:10.3762/bjnano.7.80

Graphical Abstract
  • , Germany 10.3762/bjnano.7.80 Abstract Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4
  • -isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the
  • been assessed yet [46][47]. In the present work, we studied the reconstitution of OmpF from Escherichia coli into biomimetic lipopolymer membranes, generated by self-assembly of amphiphilic poly(1,4-isoprene-block-ethylene oxide) block copolymers (PIPEO) and 1,2-diphytanoyl-sn-glycero-3-phosphocholine
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2016

Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps

  • Simon Poppinga,
  • Tim Kampowski,
  • Amélie Metzger,
  • Olga Speck and
  • Thomas Speck

Beilstein J. Nanotechnol. 2016, 7, 664–674, doi:10.3762/bjnano.7.59

Graphical Abstract
  • . Moreover, opening kinematics of young and adult Dionaea snap traps reveal that reverse snap buckling is not performed, corroborating the assumption that growth takes place on certain trap lobe regions. Our findings are discussed in an evolutionary, biomechanical, functional–morphological and biomimetic
  • of snapping [2][20][21][22][23]. Our observations on the different modes of trap closing could be of potential interest for biomimetic approaches [24] where fast and large-scale deformation of thin shells as well as principles for generation, storage and release of elastic energy are important. As
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2016

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • , biological and biomimetic processes are attracting the attention of researchers due to their viability and potential in minimization of waste [62][92]. For example, synthesis of NPs in bio-directed systems and using bio-molecules as templates for production of inorganic molecules has attracted biologists and
PDF
Album
Review
Published 10 Dec 2015

DNA–melamine hybrid molecules: from self-assembly to nanostructures

  • Rina Kumari,
  • Shib Shankar Banerjee,
  • Anil K. Bhowmick and
  • Prolay Das

Beilstein J. Nanotechnol. 2015, 6, 1432–1438, doi:10.3762/bjnano.6.148

Graphical Abstract
  • molecules can result in unique DNA-based nanostructures for application in molecular and cellular biophysics, as biomimetic systems, in energy transfer and photonics, and in diagnostics and therapeutics [18][19][20][21]. Moreover, as a bottom-up technique, such a methodology can contribute to molecular
PDF
Album
Supp Info
Letter
Published 30 Jun 2015

Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability

  • Ognen Pop-Georgievski,
  • Dana Kubies,
  • Josef Zemek,
  • Neda Neykova,
  • Roman Demianchuk,
  • Eliška Mázl Chánová,
  • Miroslav Šlouf,
  • Milan Houska and
  • František Rypáček

Beilstein J. Nanotechnol. 2015, 6, 617–631, doi:10.3762/bjnano.6.63

Graphical Abstract
  • anchoring layers of self-assembled bisphosphonate neridronate monolayers and polymer films of 3-aminopropyltriethoxysilane and biomimetic poly(dopamine). These were further used to bind a bio-functional alginate coating. The success of the titanium surface activation, anchoring layer formation and alginate
  • established continuity of the layers are examined by scanning electron microscopy, surface profilometry and atomic force microscopy. The changes in hydrophilicity after each modification step are further examined by contact angle goniometry. Keywords: alginate; biomimetic surfaces; bisphosphonates
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2015

Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings

  • Francesco De Nicola,
  • Paola Castrucci,
  • Manuela Scarselli,
  • Francesca Nanni,
  • Ilaria Cacciotti and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 353–360, doi:10.3762/bjnano.6.34

Graphical Abstract
  • hierarchical morphology is reversed (bigger MWCNT scale superimposed on the smaller SWCNT scale), thereby losing the hierarchical fakir effect [7][43]. Therefore, the SWCNT/MWCNT sample has the best hydrophobic behavior because is the most biomimetic. We remark that the large deviation of the average value of
PDF
Album
Full Research Paper
Published 02 Feb 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • of these biomimetic tissue-engineering constructs as efficient coatings for enhanced compatibility of cardiovascular implants. Keywords: cardiovascular implants; electrospun nanofibers; plasma treatment; scaffold; tissue engineering; Introduction Cardiovascular diseases represent one of the major
  • ideal material should degrade and remodel with autologous cells into a natural structure [3] while the surface should be able to guide the process of tissue formation. To this end, biomimetic surface coatings and modifications using appropriate durable and biocompatible nanomaterials have already been
  • properties along with the topographical nanoscale features of the scaffolds could be very useful in the design of novel biomimetic coatings, able to guide tissue regeneration especially in cardiovascular implant industry, where in situ vascular regeneration remains an unmet challenge. Experimental Scaffold
PDF
Album
Full Research Paper
Published 22 Jan 2015

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • Discussion Synthetic concept It is the aim to synthesize a material of larger dimensions by developing a multifunctional biomimetic composite structure, which combines properties of two biominerals in one and the same material, namely nacre and chiton teeth. To reach this goal we follow the key synthesis
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015
Other Beilstein-Institut Open Science Activities