Search results

Search for "chemotherapy" in Full Text gives 51 result(s) in Beilstein Journal of Nanotechnology.

Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages

  • Hongwang Wang,
  • Tej B. Shrestha,
  • Matthew T. Basel,
  • Raj K. Dani,
  • Gwi-Moon Seo,
  • Sivasai Balivada,
  • Marla M. Pyle,
  • Heidy Prock,
  • Olga B. Koper,
  • Prem S. Thapa,
  • David Moore,
  • Ping Li,
  • Viktor Chikan,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2012, 3, 444–455, doi:10.3762/bjnano.3.51

Graphical Abstract
  • of hyperthermia with radiation therapy and chemotherapy can greatly improve the efficacy of cancer treatment [30][31]. Ultrasmall magnetic nanoparticles generate heat efficiently in an alternating magnetic field (AMF). Due to their superior properties, such as negligible or low toxicity
  • be precisely timed. Localized hyperthermia has the potential to work in synergy with chemotherapy, especially because both hyperthermia and the activation of SN38 can be precisely and independently timed. Furthermore, hyperthermia is known to activate the immune system if the correct temperature is
  • of nanoparticles contained 0.427 mg of iron, indicating that this amount of iron would be high enough for alternating magnetic field hyperthermia in combination with chemotherapy [54]. The MTT assay indicated that 8 pg of iron can be easily loaded in each cell (20% inhibition of cell proliferation
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2012
Other Beilstein-Institut Open Science Activities