Search results

Search for "colemanite" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • fluorescein acrylate were supplied by Sigma-Aldrich. Colemanite (Ca2B6O11·5H2O) was obtained from ETI Mine Works General Management (Turkey). Iron(III) oxide, hydrochloric acid, and nitric acid were purchased from Sigma-Aldrich. Highly pure NH3 gas (99.98%) was provided by Schick GmbH & Co. KG. All solutions
  • ); characteristic infrared spectra bands – ν (С=О) in Ar-C(O)Cl, ν (С=О) in ester group at 1760 and 1752 cm−1; doublet at 1390, 1365 cm−1, referred to δ(C(CH3)3) and a band of tert-butoxy group at 848 cm−1. BNNT synthesis and purification The BNNTs were synthesized by chemical vapor deposition from colemanite (2 g
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • that large-scale production of BNNTs can be obtained using a mixture of B/V2O5/Fe2O3 and B/V2O5/Ni2O3 as precursors. In this experiment, the diameter and length of BNNTs was controlled and various BN nanostructures were obtained [57]. Recently, our group synthesized BNNTs from a boron ore, colemanite
  • (Ca6B6O11∙5H2O), for the first time by means of CVD [58]. The reaction parameters such as type of catalyst, colemanite/catalyst ratio, reaction temperature and duration were optimized. ZnO, Al2O3, Fe3O4 and Fe2O3 catalysts were investigated with respect to their differences in performance. It was found that
  • Society. SEM images of the BNNTs products at the different reaction time and colemanite/catalyst ratios (w/w) after CVD application. The respective reaction time and colemanite/catalyst ratio (w/w) were (a) 30 min and 12:1, (b) 60 min and 12:1, (c) 120 min and 12:1, (d) 120 min and 32:1, and (e) 120 min
PDF
Album
Review
Published 08 Jan 2015

Synthesis of boron nitride nanotubes from unprocessed colemanite

  • Saban Kalay,
  • Zehra Yilmaz and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2013, 4, 843–851, doi:10.3762/bjnano.4.95

Graphical Abstract
  • Saban Kalay Zehra Yilmaz Mustafa Culha Department of Genetics and Bioengineering, Yeditepe University, Atasehir, 34755 Istanbul, Turkey 10.3762/bjnano.4.95 Abstract Colemanite (Ca2B6O11·5H2O) is a natural and new precursor material for the synthesis of boron nitride nanotubes (BNNTs). BNNTs have
  • been synthesized from unprocessed colemanite for the first time. The reaction parameters such as time, catalyst type, catalyst amount and temperature were optimized. It was found that the BNNT formation follows the base growth mechanism, which was initiated with a complex of boron nitride (BN) and iron
  • yield, low cost and pure BNNTs. Keywords: boron nitride nanotube; chemical vapor deposition; colemanite; synthesis; Introduction Colemanite (Ca2B6O11·5H2O) is one of the most important compounds of more than 200 different boron ores. All boron ores include boron oxide (B2O3) at varying percentages in
PDF
Album
Full Research Paper
Published 04 Dec 2013
Other Beilstein-Institut Open Science Activities