Search results

Search for "compositionally complex alloys" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Crystalline and amorphous structure selectivity of ignoble high-entropy alloy nanoparticles during laser ablation in organic liquids is set by pulse duration

  • Robert Stuckert,
  • Felix Pohl,
  • Oleg Prymak,
  • Ulrich Schürmann,
  • Christoph Rehbock,
  • Lorenz Kienle and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 1141–1159, doi:10.3762/bjnano.16.84

Graphical Abstract
  • , compositionally complex alloys, derived from the critical view of the high-entropy effect [1]. The symbiosis of multiple elements leading to potential highly effective properties was already shown in energy applications [13], particularly in the field of heterogeneous catalysis, boosting efficiencies in ammonia
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • comprehensive synthesis approach for rare-earth-free compositionally complex alloys (CCAs) with magnetic phase transitions, spanning from bulk materials to nanoparticles. Specifically, we investigate Mn22.3Fe22.2Ni22.2Ge16.65Si16.65 (Ge-based CCA) and Mn0.5Fe0.5NiSi0.93Al0.07 (Al-based CCA). The bulk materials
  • indicate that the Al-based CCA is a promising, cost-effective alternative to Ge-based CCA at nanoscale, providing an economically viable and cost-effective alternative for nanoscale-based applications. Keywords: compositionally complex alloys; magnetic phase transition; nanoparticles; pulsed laser
  • Ni55.2Mn18.6Ga26.2, a giant magnetocaloric response with a ΔS of −20.4 J·kg−1·K−1 at 317 K in a 5 T field can be achieved compared to Ni57.2Mn15.9Ga27.0 where a ΔS of just −2 J·kg−1·K−1 at 310 K was witnessed. Within the myriad of material systems exhibiting magnetic transitions, compositionally complex alloys (CCAs
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025
Other Beilstein-Institut Open Science Activities