Search results

Search for "creep" in Full Text gives 45 result(s) in Beilstein Journal of Nanotechnology.

Nanomechanical humidity detection through porous alumina cantilevers

  • Olga Boytsova,
  • Alexey Klimenko,
  • Vasiliy Lebedev,
  • Alexey Lukashin and
  • Andrey Eliseev

Beilstein J. Nanotechnol. 2015, 6, 1332–1337, doi:10.3762/bjnano.6.137

Graphical Abstract
  • resonant frequency with decreasing humidity levels from 22 to 10% (at 298 K). After each humidity decrement the system was left to reach equilibrium for 10–30 min. Equilibration criterion was resonant frequency creep below 1 Hz/min. The curve indicates a linear behavior approximated by f = 118.99·(1
PDF
Album
Full Research Paper
Published 16 Jun 2015

Nano-contact microscopy of supracrystals

  • Adam Sweetman,
  • Nicolas Goubet,
  • Ioannis Lekkas,
  • Marie Paule Pileni and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2015, 6, 1229–1236, doi:10.3762/bjnano.6.126

Graphical Abstract
  • paper, the tip was held at ground potential and the sample was biased. To help stabilise the imaging conditions, a custom-built atom tracking system [37] was used to apply feed-forward correction to reduce the effect of thermal drift and piezo-electric creep. To measure the site-specific force between
  • . We also note that, due to instrumental drift and creep, the Δz values are likely to be systematically underestimated. (A) Overview dSTM showing nanocrystal assembly, Vgap = +2 V, = 20 pA. (B) DFM image acquired in the region shown in A. Vgap = 0 V, Δf = −2.3 Hz, A0 = 0.11 nm. (C) Constant height Δf
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2015

Modeling viscoelasticity through spring–dashpot models in intermittent-contact atomic force microscopy

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2014, 5, 2149–2163, doi:10.3762/bjnano.5.224

Graphical Abstract
  • , including creep, stress relaxation and the presence of multiple relaxation times. Some of the models examined have been previously used in AFM simulation, but their applicability to different situations has not yet been examined in detail. The behavior of each model is analyzed here in terms of force
  • deformation frequencies (descriptions of tip–sample model behaviors in the context of multifrequency AFM require detailed studies and are beyond the scope of this work). Keywords: atomic force microscopy; creep; dissipated energy; multifrequency; stress relaxation; tapping mode; viscoelasticity
  • relaxation, creep or multiple relaxation times, which are very distinct features in materials that exhibit rate-dependent behaviors, such as polymers [22]. A recent attempt has been made to model viscoelastic samples in AFM by using a standard linear solid (SLS) model (which is also discussed below) in order
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2014
Graphical Abstract
  • single-mode and bimodal atomic force microscopy (AFM) with particular focus on the viscoelastic interactions occurring during tip–sample impact. The surface is modeled by using a standard linear solid model, which is the simplest system that can reproduce creep compliance and stress relaxation, which are
  • applicable and useful for certain types of samples [9]. The purpose of this paper is to explore computationally the expected physics and the response of the observables for a viscoelastic contact model that exhibits both creep compliance and stress relaxation. Thus, the standard linear solid model (SLS [10
  • qualitative behavior for creep compliance and stress relaxation, its study can highlight the range of open issues that remain in the development of surface viscoelasticity measurement methods based on intermittent-contact AFM. This paper begins with a background section providing a very brief description of
PDF
Album
Full Research Paper
Published 26 Sep 2014

Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air

  • Santiago D. Solares,
  • Sangmin An and
  • Christian J. Long

Beilstein J. Nanotechnol. 2014, 5, 1637–1648, doi:10.3762/bjnano.5.175

Graphical Abstract
  • repulsive tip–sample forces were accounted for through a standard linear solid (SLS) model [9] which exhibits both stress relaxation and creep (see Figure 10 and notice the variety of force and surface trajectories for the single and multiple impacts observed in multimodal tapping-mode imaging [20]). Long
PDF
Album
Full Research Paper
Published 25 Sep 2014

On the structure of grain/interphase boundaries and interfaces

  • K. Anantha Padmanabhan and
  • Herbert Gleiter

Beilstein J. Nanotechnol. 2014, 5, 1603–1615, doi:10.3762/bjnano.5.172

Graphical Abstract
  • possible. (The assumption of “representative volume” is used even when the upper limiting case, based on the assumption that grain boundaries are flat, is involved, e.g., Nabarro–Herring (N–H) creep, even though this is not stated explicitly. In N–H creep, for example, it is assumed that what occurs in a
PDF
Album
Review
Published 22 Sep 2014

Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2014, 5, 822–836, doi:10.3762/bjnano.5.94

Graphical Abstract
  • than bulk. Both nanoparticles and film showed increasing hardness for decreasing penetration depth. For the film, creep and strain rate effects were observed. In comparison of nanoindentation and compression tests, more pop-ins during loading were observed during the nanoindentation of nanoparticles
  • understanding of materials behavior during contact. Mechanical properties of interest comprise hardness, Young’s modulus of elasticity, bulk modulus, elastic–plastic deformation, scratch resistance, residual stresses, time-dependent creep and relaxation properties, fracture toughness, fatigue and yield strength
  • compression with a flat punch (global deformation). Data from the nanoindentation studies were compared with bulk to study scale effects on hardness. The effects of the penetration depth on hardness were investigated for nanoparticles and thin films. For the films, creep and strain rate tests were also
PDF
Album
Full Research Paper
Published 11 Jun 2014

Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

  • Xiaohong Wang,
  • Heinz C. Schröder and
  • Werner E. G. Müller

Beilstein J. Nanotechnol. 2014, 5, 610–621, doi:10.3762/bjnano.5.72

Graphical Abstract
  • acid (Asp, D) and glutamic acid (Glu, E) [50]. The hardness, elastic modulus and creep of the two forms of the calcium carbonate deposits, the calcitic prisms and the round-shaped vaterite deposits were determined by nanoindentation. The load–displacement curves obtained for the two calcium carbonate
  • prisms (72.83 ± 11.68 GPa). This significant difference in the mechanical properties between the two morphologies can also be deduced from the creep behavior. While the creep characteristics for the rhombohedral calcitic prisms was found to be 5.44 ± 1.15 (per maximal depth [%]), the corresponding value
PDF
Album
Review
Published 12 May 2014

Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

  • Adam Sweetman and
  • Andrew Stannard

Beilstein J. Nanotechnol. 2014, 5, 386–393, doi:10.3762/bjnano.5.45

Graphical Abstract
  • custom-built atom tracking system developed at the University of Mainz [18] was used to apply feedforward correction to reduce the effect of thermal drift and piezo-electric creep. To obtain the site-specific interaction force, single point Δf(z) spectroscopy measurements were acquired on the adatoms
PDF
Album
Full Research Paper
Published 01 Apr 2014

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
  • means that the strain depends only on time and not on the magnitude of stress. This holds when the stress is kept small. The dynamics can be experimentally studied by several means, the most common being summarized here [60]: creep relaxation, in which the indenter is rapidly brought to a given force
  • strain. To illustrate these differences, for load control as it is used in INI creep relaxation, the Voigt model, Figure 4a, can be applied, but for nanoindentation stress relaxation as it is conveniently done in AFM, the Maxwell model (Figure 4b) is more appropriate. Whereas these simplistic models give
  • series, depicted in Figure 4c and 4d, respectively. A combination of Voigt elements connected in series is known as the Voigt–Kelvin model. This model and its modifications are widely used for nanoindentation creep relaxation analysis due to the suitability of the Voigt model for solids as mentioned
PDF
Album
Review
Published 29 Nov 2013

Routes to rupture and folding of graphene on rough 6H-SiC(0001) and their identification

  • M. Temmen,
  • O. Ochedowski,
  • B. Kleine Bussmann,
  • M. Schleberger,
  • M. Reichling and
  • T. R. J. Bollmann

Beilstein J. Nanotechnol. 2013, 4, 625–631, doi:10.3762/bjnano.4.69

Graphical Abstract
  • prior to measurements. All images in this paper are presented without filtering or smoothing. The topographic images are compensated for piezo creep and drift as well as for scanner bow using common plane subtraction and (facet) leveling algorithms of the Gwyddion software package [26]. Results and
PDF
Album
Full Research Paper
Published 07 Oct 2013

Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity

  • Antti Tolvanen and
  • Karsten Albe

Beilstein J. Nanotechnol. 2013, 4, 173–179, doi:10.3762/bjnano.4.17

Graphical Abstract
  • activity (stacking faults within the encapsulated material even though the extruded material was not crystalline) and thermodynamical arguments stating the insufficient speed of diffusion for vacancy-assisted creep in the experimental system. Yet, neither dislocation nucleation nor dislocation interactions
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2013

Hydrogen-plasma-induced magnetocrystalline anisotropy ordering in self-assembled magnetic nanoparticle monolayers

  • Alexander Weddemann,
  • Judith Meyer,
  • Anna Regtmeier,
  • Irina Janzen,
  • Dieter Akemeier and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2013, 4, 164–172, doi:10.3762/bjnano.4.16

Graphical Abstract
  • equilibrium states. The experimental results will be compared to numerical calculations based on the idea that the plasma induces a process comparable to the time-dependent creep under tension in which the plasma acts as thermal activation. Experimental Measurements were carried out with two different species
  • comparable to mechanical creep under tension with the hydrogen plasma acting as the thermal actuator. With the stray-field energy minimum obtained for an in-plane magnetic configuration, the easy magnetocrystalline axes of individual particles should migrate into the particle plane, resembling the respective
  • with the stray field of contiguous nanocrystals. The process is comparable to the time-dependent creep under tension with the plasma acting as the thermal activation. For uniaxial magnetocrystalline anisotropy, the migration of the magnetocrystalline easy axes results in an increase of the effective
PDF
Album
Full Research Paper
Published 04 Mar 2013

Towards 4-dimensional atomic force spectroscopy using the spectral inversion method

  • Jeffrey C. Williams and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2013, 4, 87–93, doi:10.3762/bjnano.4.10

Graphical Abstract
  • and Kelvin–Voigt models. In the SLS configuration a Maxwell element is connected in parallel with a second spring (this setup is also known as the Zener model). The SLS approximation provides the simplest form of a linear viscoelastic approximation that can reproduce both stress relaxation and creep
PDF
Album
Full Research Paper
Published 07 Feb 2013

Growth behaviour and mechanical properties of PLL/HA multilayer films studied by AFM

  • Cagri Üzüm,
  • Johannes Hellwig,
  • Narayanan Madaboosi,
  • Dmitry Volodkin and
  • Regine von Klitzing

Beilstein J. Nanotechnol. 2012, 3, 778–788, doi:10.3762/bjnano.3.87

Graphical Abstract
  • compared to the creep-compliance function [41][46], it resembles the stress relaxation fit used for heterogeneous materials [13][14], and allows for a qualitative comparison of the cantilever relaxation time rather than giving the actual material relaxation time. Before discussing the outcome of the fits
PDF
Album
Full Research Paper
Published 21 Nov 2012

Dimer/tetramer motifs determine amphiphilic hydrazine fibril structures on graphite

  • Loji K. Thomas,
  • Nadine Diek,
  • Uwe Beginn and
  • Michael Reichling

Beilstein J. Nanotechnol. 2012, 3, 658–666, doi:10.3762/bjnano.3.75

Graphical Abstract
  • creep to a minimum during measurements. Furthermore, images used for structural analysis were those with minimal thermal drift, and a drift correction was done whenever feasible. For imaging of molecular structures, the tip was retracted slightly, and a drop of the solution was applied onto the basal
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2012

Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

  • Mehmet Z. Baykara,
  • Omur E. Dagdeviren,
  • Todd C. Schwendemann,
  • Harry Mönig,
  • Eric I. Altman and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2012, 3, 637–650, doi:10.3762/bjnano.3.73

Graphical Abstract
  • quantitatively and qualitatively, including: thermal and electronic drift during the measurement, nonlinearities and creep associated with piezoelectric scan elements used in the microscope, variability of tip-apex structure and chemistry between different experiments, and elastic deformations of the tip under
  • to obtain information on the investigated sample with as little ambiguity, uncertainty, and irreproducibility due to technique-inherent practical limitations as possible. In the case of NC-AFM, drift, piezo nonlinearities, and piezo creep result in an apparent spatial misalignment and distortion of
  • during force-spectroscopy experiments, the use of digital electronics for NC-AFM detection and control generally eliminates the effects of electronic drifts on measured data. Piezo nonlinearities and piezo creep Positioning devices that employ piezoelectric materials to realize voltage-controlled
PDF
Album
Full Research Paper
Published 11 Sep 2012

Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)

  • Christian Held,
  • Thomas Seyller and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2012, 3, 179–185, doi:10.3762/bjnano.3.19

Graphical Abstract
  • two-dimensional histograms. The contact potential signal recorded in KPFM shows only a little noise and drift, and can be directly processed in the form of histograms. In contrast, the topography signal needs to be processed to correct for the effects of drift, piezo creep, and piezo hysteresis [26
PDF
Album
Full Research Paper
Published 29 Feb 2012

Mechanical characterization of carbon nanomembranes from self-assembled monolayers

  • Xianghui Zhang,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2011, 2, 826–833, doi:10.3762/bjnano.2.92

Graphical Abstract
  • stress (304 ± 15 MPa) the deformation exhibited a nonlinear increase, and thus this indicates tensile creep, as shown in Figure 4b. Note that delamination of CNMs would lead to a steplike increased deflection, but here we observed a continuous increase, indicating a strong adhesion between the CNM and
  • the silicon. The applied strain at which creep deformation starts for CNMs is in the range of 0.8–1.2%. Strain rates as low as 10−8 s−1 can be measured with the employed AFM setup. At the beginning of loading, a linear relationship between strain and time was observed, as shown in the inset of Figure
  •  5a. Initial creep rates were thus derived from the slopes of linear curve fits, and they increased with increasing tensile strain. As plotted in Figure 5a, initial creep rates are in the range of 10−6 s−1. This is in contrast to some polymers whose creep rate can span several orders of magnitude
PDF
Album
Video
Full Research Paper
Published 20 Dec 2011

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • atomic force microscopy (FM-AFM) or dynamic force microscopy (DFM). For the stability of tip and sample as well as for the reduction of piezo creep, piezo hysteresis, thermal drift and noise level, the setup was operated in ultrahigh vacuum (UHV) at low temperature (5 K). The resulting high stability
PDF
Album
Review
Published 03 Jan 2011
Other Beilstein-Institut Open Science Activities