Search results

Search for "crystallization" in Full Text gives 187 result(s) in Beilstein Journal of Nanotechnology.

Synthesis and catalytic applications of combined zeolitic/mesoporous materials

  • Jarian Vernimmen,
  • Vera Meynen and
  • Pegie Cool

Beilstein J. Nanotechnol. 2011, 2, 785–801, doi:10.3762/bjnano.2.87

Graphical Abstract
  • precursors and the organosilane surfactant avoids the expelling of the surfactant-based mesostructure out of the crystallization of the zeolite phase during the synthesis (Figure 6). The number of publications on these tailor-made surfactants keeps on rising [60][142][143][144][145][146]. Recently, Ryoo and
PDF
Album
Review
Published 30 Nov 2011
Graphical Abstract
  • [30], where methanol addition was found to induce the formation of a ribbon structure. The addition of LPEI-dissolving methanol delays the crystallization process and this slow crystallization is beneficial for the formation of crystals with increased size. Moreover, we also developed a methanol
  • would induce a relatively faster crystallization of LPEI in the thin film, leading to the formation of crystalline LPEI aggregates with decreased size and networklike structure between the nanounits. This room-temperature process for both LPEI matrix formation and silica deposition is important, because
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2011

Lifetime analysis of individual-atom contacts and crossover to geometric-shell structures in unstrained silver nanowires

  • Christian Obermair,
  • Holger Kuhn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2011, 2, 740–745, doi:10.3762/bjnano.2.81

Graphical Abstract
  • contacts are formed, corresponding to only one or two atoms in their cross-sectional area. With increasing contact radius the conductance is dominated by the building of electronic shells, and finally the bulk crystallization leads to the dominance of geometric shells. Our experimental data are in
PDF
Album
Full Research Paper
Published 03 Nov 2011

Nanostructured, mesoporous Au/TiO2 model catalysts – structure, stability and catalytic properties

  • Matthias Roos,
  • Dominique Böcking,
  • Kwabena Offeh Gyimah,
  • Gabriela Kucerova,
  • Joachim Bansmann,
  • Johannes Biskupek,
  • Ute Kaiser,
  • Nicola Hüsing and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 593–606, doi:10.3762/bjnano.2.63

Graphical Abstract
  • maximum at 2Θ = 1.35, indicating repeating unit distances of 6.54 nm (data not shown). Upon calcination, the material crystallized and anatase nanocrystallites formed at temperatures above 350 °C; crystallization was completed with increasing temperature (600 °C). Further heat treatment resulted in the
  • formation of the thermodynamically stable polymorph rutile, with complete transformation from anatase to rutile at about 1000 °C (cf. Figure 3). Concomitantly with crystallization, the organized mesopore system collapsed during the heat treatment as expected when structure-directing agents, such as Pluronic
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2011

Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

  • Manuel R. Gonçalves,
  • Taron Makaryan,
  • Fabian Enderle,
  • Stefan Wiedemann,
  • Alfred Plettl,
  • Othmar Marti and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 448–458, doi:10.3762/bjnano.2.49

Graphical Abstract
  • an acrylic glass container of 1.25 cm3 volume. The cold sides of two Peltier elements were attached to the upper and lower sides of the sample container. By applying adequate currents the rate of evaporation was reduced and the crystallization of the beads occurred, mostly forming monolayers with
  • areal extents up to 1 cm2. The number of vacancies and dislocations of the colloidal crystal increased as the size of the beads decreased. For beads of 3 μm size, single crystals of several mm2 were usually obtained. The evaporation of the water and full crystallization takes up to 6 h. Epoxy resin
PDF
Album
Full Research Paper
Published 16 Aug 2011

Recrystallization of tubules from natural lotus (Nelumbo nucifera) wax on a Au(111) surface

  • Sujit Kumar Dora and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2011, 2, 261–267, doi:10.3762/bjnano.2.30

Graphical Abstract
  • similar surface properties. Results Figure 1 shows a series of AFM images of wax growth on the Au(111) surface. A video sequence of all the images taken during scanning, which demonstrates the representative wax crystallization process on Au(111), is available in Supporting Information File 1. As for
  • we would also like to refer to the orientation of wax tubules found in previous studies of the self-assembly of natural nonacosan-10-ol wax on different substrates. Jetter and co-workers [2] showed that substrate polarity and roughness play no role in tubule crystallization by demonstrating a
  • applied onto the central part of both the Au(111) and a HOPG surface. The total area of wax crystallization was about 20 mm2 for both substrates. The chloroform took ca. 30 seconds to evaporate from the surface leaving the wax molecules on the substrate. The substrates were then fixed to the AFM stainless
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2011

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

  • Anna J. Schulte,
  • Damian M. Droste,
  • Kerstin Koch and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 228–236, doi:10.3762/bjnano.2.27

Graphical Abstract
  • ], was used. In this method a sample–droplet (glycerol–water mixture of 1:3) complex was frozen with liquid nitrogen. A water–glycerol mixture was used as the liquid to prevent crystallization patterns on the droplet surface, which occur on pure water droplets. After this the sample was separated from
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2011

Detection of interaction between biomineralising proteins and calcium carbonate microcrystals

  • Hanna Rademaker and
  • Malte Launspach

Beilstein J. Nanotechnol. 2011, 2, 222–227, doi:10.3762/bjnano.2.26

Graphical Abstract
  • %. Thus, the protocol used for crystallization produced different polymorphs with reasonable purities. Determination of the specific surface area of aragonite and calcite by evaluation of light microscopy images and gas adsorption (BET method, see, e.g., [4]) both showed a roughly ten times larger
PDF
Album
Full Research Paper
Published 27 Apr 2011

Twofold role of calcined hydrotalcites in the degradation of methyl parathion pesticide

  • Alvaro Sampieri,
  • Geolar Fetter,
  • María Elena Villafuerte-Castrejon,
  • Adriana Tejeda-Cruz and
  • Pedro Bosch

Beilstein J. Nanotechnol. 2011, 2, 99–103, doi:10.3762/bjnano.2.11

Graphical Abstract
  • patterns with marked differences (Supporting Information File 2 for XRD diffractograms). This process leads to the formation of mixed oxides whose crystallite size depends on their crystallization rate [9][10][11][12][27][28]. For instance, NiO and MgO oxides, from Mg–Al and Ni–Al calcined HTs, have a
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2011

Synthesis of LiNbO3 nanoparticles in a mesoporous matrix

  • Anett Grigas and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2011, 2, 28–33, doi:10.3762/bjnano.2.3

Graphical Abstract
  • present work, we investigated a rapid and efficient one-step route for the direct IR-accelerated synthesis of LiNbO3 nanopowders using an ordered mesoporous silica SBA-15 as the template, in combination with an IR furnace for the crystallization. The matrix stabilizes the nanoparticles against sintering
  • while the heat treatment promotes crystallization. For material tailoring purposes the factors influencing the particle size under the reaction conditions on the size of the nanoparticles were considered. The IR furnace uses a lamp for indirect heat treatment and the wavelength can be tuned with the
  • located close to the sample. Results and Discussion In general for the preparation of LiNbO3, SBA-15 was impregnated with a solution containing LiNO3 and NH4NbO(C2O4)2·xH2O. Crystallization was carried out in air using an IR furnace IRF 10 (Behr) in the temperature range 750–1000 °C (see Experimental
PDF
Album
Full Research Paper
Published 10 Jan 2011

Single-pass Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials

  • Sergei Magonov and
  • John Alexander

Beilstein J. Nanotechnol. 2011, 2, 15–27, doi:10.3762/bjnano.2.2

Graphical Abstract
  • evaporation of the solvent and crystallization of PVDF. Therefore, dendritic structures observed on film surface represent crystalline PVDF. The dark surface potential contrast of the structures is consistent with the presence of a molecular dipole (~2.1 V) in this polymer and the preferential orientation of
PDF
Album
Full Research Paper
Published 06 Jan 2011

Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

  • Sunandan Baruah,
  • Mohammad Abbas Mahmood,
  • Myo Tay Zar Myint,
  • Tanujjal Bora and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2010, 1, 14–20, doi:10.3762/bjnano.1.3

Graphical Abstract
  • observed with engineered defects in ZnO crystals achieved by fast crystallization during synthesis of the nanoparticles [20]. Results from photocatalysis experiments carried out using ZnO nanoparticles prepared through a slow growth process (3 h hydrolysis at 60 °C) and rapid crystallization (7 min under
  • microwave irradiation) have already been reported in a previous publication [20]. A higher optical absorption in the visible region was observed in this case. The faster degradation of methylene blue (MB) in the presence of nonstoichiometric crystallites of ZnO prepared through fast crystallization can be
  • crystallization temperatures, homogenous nucleation and fast supersaturation by rapid dissolution [22][23][24][25][26][27]. In this work a study is conducted on the improvement of visible light photocatalytic degradation of a model organic dye, methylene blue, with ZnO nanorods grown by a rapid growth process
PDF
Album
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities