Search results

Search for "dysprosium" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Phenalenyl-based mononuclear dysprosium complexes

  • Yanhua Lan,
  • Andrea Magri,
  • Olaf Fuhr and
  • Mario Ruben

Beilstein J. Nanotechnol. 2016, 7, 995–1009, doi:10.3762/bjnano.7.92

Graphical Abstract
  • Abstract The phenalenyl-based dysprosium complexes [Dy(PLN)2(HPLN)Cl(EtOH)] (1), [Dy(PLN)3(HPLN)]·[Dy(PLN)3(EtOH)]·2EtOH (2) and [Dy(PLN)3(H2O)2]·H2O (3), HPLN being 9-hydroxy-1H-phenalen-1-one, have been synthesized. All compounds were fully characterized by means of single crystal X-ray analysis
  • synthesize sublimable phenalenyl-based dysprosium complexes have been made by implementing a synthetic strategy under anhydrous conditions. The sublimed species were characterized and their thermal stability was confirmed. This opens up the possibility to deposit phenalenyl-based lanthanides complexes by
  • sublimation onto surfaces, an important prerequisite for ongoing studies in molecular spintronics. Keywords: coordination complexes; dysprosium; magnetism; mononuclear; phenalenyl-based; Introduction In the pioneering studies of next-generation information processing devices, single-molecule magnets (SMMs
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2016

Single-molecule magnet behavior in 2,2’-bipyrimidine-bridged dilanthanide complexes

  • Wen Yu,
  • Frank Schramm,
  • Eufemio Moreno Pineda,
  • Yanhua Lan,
  • Olaf Fuhr,
  • Jinjie Chen,
  • Hironari Isshiki,
  • Wolfgang Wernsdorfer,
  • Wulf Wulfhekel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2016, 7, 126–137, doi:10.3762/bjnano.7.15

Graphical Abstract
  • range of 2–5 K. Hysteresis loops were indeed observed from 2–3.3 K in the range of ±0.3 T (Supporting Information File 1, Figure S4), confirming that 3 performs rather well as an SMM even at a very slow sweeping rate, i.e. 0.0003 T s−1. Magnetic axes. The dysprosium dimer compound, i.e. 3 exhibits a
PDF
Album
Supp Info
Full Research Paper
Published 28 Jan 2016

Influence of the supramolecular architecture on the magnetic properties of a DyIII single-molecule magnet: an ab initio investigation

  • Julie Jung,
  • Olivier Cador,
  • Kevin Bernot,
  • Fabrice Pointillart,
  • Javier Luzon and
  • Boris Le Guennic

Beilstein J. Nanotechnol. 2014, 5, 2267–2274, doi:10.3762/bjnano.5.236

Graphical Abstract
  • transferable into single-molecule devices. Keywords: ab initio calculations; dysprosium; magnetic properties; single-molecule magnets; supramolecular effects; Introduction At the molecular level, single-molecule magnets (SMMs) can be seen as magnets in which the magnetic information relies on the magnetic
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2014

Spin relaxation in antiferromagnetic Fe–Fe dimers slowed down by anisotropic DyIII ions

  • Valeriu Mereacre,
  • Frederik Klöwer,
  • Yanhua Lan,
  • Rodolphe Clérac,
  • Juliusz A. Wolny,
  • Volker Schünemann,
  • Christopher E. Anson and
  • Annie K. Powell

Beilstein J. Nanotechnol. 2013, 4, 807–814, doi:10.3762/bjnano.4.92

Graphical Abstract
  • Mössbauer spectroscopy in combination with susceptibility measurements it was possible to identify the supertransferred hyperfine field through the oxygen bridges between DyIII and FeIII in a {Fe4Dy2} coordination cluster. The presence of the dysprosium ions provides enough magnetic anisotropy to “block
  • the single ion and crystal field contributions and 57Fe Mössbauer spectroscopy may be informative with regard to the the anisotropy not only of the studied isotope, but also of elements interacting with this isotope. Keywords: anisotropy; dysprosium; iron; Mössbauer spectroscopy; Introduction The
  • (µ2-alkoxo) bridges, to a Dy atom and to an Fe atom in the butterfly. Peripheral ligation is provided by four µ-pivalato ligands in their common syn,syn bridging mode. Two further unidentate pivalates each coordinate to a dysprosium, with the non-coordinated carboxylate oxygen atom accepting a
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2013
Other Beilstein-Institut Open Science Activities