Search results

Search for "eucalyptus" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Insect attachment on waxy plant surfaces: the effect of pad contamination by different waxes

  • Elena V. Gorb and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 385–395, doi:10.3762/bjnano.15.35

Graphical Abstract
  • Eucalyptus nitens (H. Deane & Maiden) Maiden (Myrtaceae) [26] and N. alata [27]. Both earlier and rather recent studies gave direct indications that 3D waxes of the plant species from the genera Brassica (Brassicaceae) [8][28][29] and Nepenthes [30][31][32][33] contaminated insect adhesive pads. Also our
PDF
Album
Full Research Paper
Published 11 Apr 2024

Sulfur nanocomposites with insecticidal effect for the control of Bactericera cockerelli

  • Lany S. Araujo-Yépez,
  • Juan O. Tigrero-Salas,
  • Vicente A. Delgado-Rodríguez,
  • Vladimir A. Aguirre-Yela and
  • Josué N. Villota-Méndez

Beilstein J. Nanotechnol. 2023, 14, 1106–1115, doi:10.3762/bjnano.14.91

Graphical Abstract
  • eucalyptus and rosemary essential oils to determine the insecticidal effect in the control of nymphs of paratrioza (Bactericera cockerelli (Sulc) (Hemiptera: Triozidae)) in potato crops. A solution of thiosulfate was reduced to elemental sulfur, and the sulfur nanoparticles were coated with eucalyptus and
  • in the entomology laboratory 24, 48, and 72 h after application. Furthermore, efficacy was compared to the commercial insecticide thiamethoxam (0.25%) and a control. The results show that eucalyptus nanocomposites with oil concentrations of 0.25%, 0.5%, and 0.75% and rosemary nanocomposites with an
  • nanocomposites are more effective in controlling nymphs of paratrioza than the commercial insecticide thiamethoxam; thus, they could be used for the development of new insecticides. Keywords: eucalyptus; nanoinsecticide; nanotechnology; Paratrioza control; rosemary; Introduction Paratrioza (Bactericera
PDF
Album
Full Research Paper
Published 17 Nov 2023

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • Apis mellifera L. bees, located inside a eucalyptus reserve, surrounded by native forest with predominance of Baccharis dracunculifolia (Asteraceae), in the northwest of Parana state. This research was registered in Brazil with SISGEN N° AC7A2F5. The different PRP extracts were prepared by turbo
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass

  • Miriam Anna Huth,
  • Axel Huth and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2021, 12, 939–949, doi:10.3762/bjnano.12.70

Graphical Abstract
  • Miriam Anna Huth Axel Huth Kerstin Koch Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany 10.3762/bjnano.12.70 Abstract Eucalyptus trees and many plants from the grass family (Poaceae) and the heather family (Ericaceae) have a protective
  • that ß-diketone tubules are formed by self-assembly and confirmed that ß-diketone is the shape-determining component for this type of tubules. Keywords: ß-diketone tubules; eucalyptus; plant wax; recrystallization; self-assembly; Introduction The plant cuticle, which is the largest biological
  • morphologically different type of wax tubules is unknown. On Eucalyptus gunnii leaves mainly the characteristic ß-diketone tubules are present (Figure 1), but helically wound ribbons and a transitional form between both shapes are also present. Atomic force microscopy investigations of tubule formation on living
PDF
Album
Full Research Paper
Published 20 Aug 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • photocatalytic, electrochemical, and catalytic properties. Furthermore, NiO NPs exhibit anti-inflammatory properties, generating interest in the biomedical field to use these NPs as antibiotics or in cancer treatments [116][133]. NiO NPs synthesized from Eucalyptus globulus leaf extract showed excellent
PDF
Album
Review
Published 25 Sep 2020

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • amine groups in the both leaf extracts are accountable for the reduction of Ag+ ions to Ag NPs and the protein portion of leaf extract can play the role of both reducing agent and stabilizer for Ag NPs [45]. Ravindra et al. used aqueous extracts of Eucalyptus citriodora and Ficus bengalensis to produce
  • aqueous extract of Lonicera japonica flower as a reducer and a stabilizer at 70 °C for 30–60 min. They obtained spherical, triangular and hexagonal Ag and Au NPs with average sizes of 7.8 and 8.02 nm, respectively [25]. Sulaiman et al. prepared the leaf extract of Eucalyptus chapmaniana (E. chapmaniana
PDF
Album
Review
Published 10 Dec 2015

Superhydrophobicity in perfection: the outstanding properties of the lotus leaf

  • Hans J. Ensikat,
  • Petra Ditsche-Kuru,
  • Christoph Neinhuis and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 152–161, doi:10.3762/bjnano.2.19

Graphical Abstract
  • contact angles between 160 and 163°. Even some species with flat epidermis cells but with a dense layer of epicuticular wax crystals, such as Brassica oleracea or some Eucalyptus species, can exhibit contact angles >160°. Thus, the contact angle alone is not suitable for a differentiated comparison of
  • tubules, and (f) Eucalyptus macrocarpa ca. 50 tubules per 10 µm2. The larger spacing between the wax crystals of the other surfaces compared to the lotus upper side is obvious. Chemical composition of the separated waxes of the upper and lower side of the lotus leaf. The upper side wax contains 65% of
PDF
Album
Video
Full Research Paper
Published 10 Mar 2011
Other Beilstein-Institut Open Science Activities