Search results

Search for "ex vivo" in Full Text gives 33 result(s) in Beilstein Journal of Nanotechnology.

Synthesis of radioactively labelled CdSe/CdS/ZnS quantum dots for in vivo experiments

  • Gordon M. Stachowski,
  • Christoph Bauer,
  • Christian Waurisch,
  • Denise Bargheer,
  • Peter Nielsen,
  • Jörg Heeren,
  • Stephen G. Hickey and
  • Alexander Eychmüller

Beilstein J. Nanotechnol. 2014, 5, 2383–2387, doi:10.3762/bjnano.5.247

Graphical Abstract
  • in the whole body or in ex vivo samples by γ-counting. However, the synthesis of radioactively labelled QDs is not trivial since the coating process must be completely adapted, and material availability, security and avoidance of radioactive waste must be considered. In this contribution, the coating
PDF
Album
Full Research Paper
Published 10 Dec 2014

Interaction of dermatologically relevant nanoparticles with skin cells and skin

  • Annika Vogt,
  • Fiorenza Rancan,
  • Sebastian Ahlberg,
  • Berouz Nazemi,
  • Chun Sik Choe,
  • Maxim E. Darvin,
  • Sabrina Hadam,
  • Ulrike Blume-Peytavi,
  • Kateryna Loza,
  • Jörg Diendorf,
  • Matthias Epple,
  • Christina Graf,
  • Eckart Rühl,
  • Martina C. Meinke and
  • Jürgen Lademann

Beilstein J. Nanotechnol. 2014, 5, 2363–2373, doi:10.3762/bjnano.5.245

Graphical Abstract
  • were able to isolate skin cells which had taken up particles from treated ex vivo human skin (Figure 1d) [3][11]. In accordance with previous studies, the particle size appeared to be a major determinant for cellular uptake. Notably, after ex vivo topical application of silica particles on human skin
  • cell culture conditions are not always predictive for ex vivo or in vivo tissue studies. For example, in previous studies on skin interactions with biodegradable poly(lactic acid) (PLA) particles loaded with different fluorescent dyes, we found that although mono-dispersed and stable in aqueous
  •  4d). Further studies are ongoing to validate this technique on whole tissue. Conclusion In the presented studies, we tried to obtain a comprehensive picture of nanoparticle–skin interactions for silica, titanium dioxide and silver particles. Skin penetration studies suggest that under ex vivo
PDF
Album
Full Research Paper
Published 08 Dec 2014

Biopolymer colloids for controlling and templating inorganic synthesis

  • Laura C. Preiss,
  • Katharina Landfester and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2014, 5, 2129–2138, doi:10.3762/bjnano.5.222

Graphical Abstract
  • vivo mineralization, trying to study the effects of natural macromolecules [30]. Silicateins, for instance, are proteins not only used ex vivo for understanding mineralization processes in sponges, but also applied to prepare novel biomimetic hybrid materials, as nicely revised in a recent publication
  • find starch [13][14], different cellulose derivatives [15], dextran [16], pectin [17], alginate [18], and poly(amino acids) or proteins [19][20][21][22][23][24][25][26][27][28][29]. Researchers in the biomineralization field very often extract proteins from biological matter and use them for the ex
PDF
Album
Review
Published 17 Nov 2014

The gut wall provides an effective barrier against nanoparticle uptake

  • Heike Sinnecker,
  • Thorsten Krause,
  • Sabine Koelling,
  • Ingmar Lautenschläger and
  • Andreas Frey

Beilstein J. Nanotechnol. 2014, 5, 2092–2101, doi:10.3762/bjnano.5.218

Graphical Abstract
  • model the structural barrier of a healthy gut is retained without the complexity of a whole animal model or the simplifications of a mere cell culture system. Our results obtained with this ex vivo system show that the multiple fencings of the intestinal mucosa combine into an effective barrier against
  • any interactions between NPs and the mucus. With our histological analysis performed on intestinal tissue after the ex vivo NP challenge experiments we could show that the bulk of the particles was trapped in the mucus layer and only few particles adhered or were taken up. This led us to speculate
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • intratracheal instillation can cause moderate pulmonary toxicity in vivo, but only at rather high concentrations [124]. Ex vivo approaches, such as isolated-perfused lungs or precision-cut lung slices (PCLS), have been developed as an alternative to in vivo studies [125]. They allow for a more detailed view on
  • localized predominantly at the cut surface but not inside PCLS, indicating that the particles did not reach the inner PCLS tissue regions [126]. However, ex vivo approaches are complex and difficult to control in a standardized laboratory environment, therefore sample administration might not reflect the
PDF
Album
Review
Published 03 Nov 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • nanomaterials for developing nanosized sensing/actuating technologies, ultimately capable of functional interfacing with nerve cells and brain tissue, in order to repair the brain on the (sub)cellular scale. CNTs: The first application of CNTs in neuroscience was the exploration of CNTs thin-films as ex vivo
  • [118]. They were the first researchers to intracellularly monitor the electrical activity of neurons developing ex vivo on CNT-substrates (Figure 2A–C). The researchers unexpectedly reported that CNTs had an effect on spontaneous synaptic activity (Figure 2D–F). Mazzatenta and colleagues [119] further
  • spontaneous excitatory postsynaptic miniature currents (mEPSCs) [130]. The results showed that culturing neurons on ND did not affect synaptic activity. The use of ND as a platform material for neural interfaces [131] has been studied both in vivo [132], ex vivo [133] and in vitro [128]. For these
PDF
Album
Correction
Review
Published 23 Oct 2014

In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics

  • Wolfgang G. Kreyling,
  • Stefanie Fertsch-Gapp,
  • Martin Schäffler,
  • Blair D. Johnston,
  • Nadine Haberl,
  • Christian Pfeiffer,
  • Jörg Diendorf,
  • Carsten Schleh,
  • Stephanie Hirn,
  • Manuela Semmler-Behnke,
  • Matthias Epple and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1699–1711, doi:10.3762/bjnano.5.180

Graphical Abstract
  • important cell types is retained and the number of test animals can be reduced by creating multiple PCLS from one single lung. Thus, PCLS may represent a good ex vivo intermediate between in vitro and in vivo test systems. In the following we describe a pilot study anticipated to be followed by in-depth
  • protein content of the PCLS did not change for the same range of LPS concentrations during the first 24 hours (data not shown). Further discussion including cytokine release will be discussed below. These ex vivo studies are complemented by in vivo studies, after instillation of the same AgNP at the same
  • doses, on toxicological responses of rat lungs determined in broncho-alveolar lavage fluids by using the same endpoints as in the ex vivo studies described above [22]. Remarkably, the rather consistent findings of increased pro-inflammatory response in an AgNP dose-dependent manner as determined by
PDF
Album
Review
Published 02 Oct 2014

Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

  • Tatiana Borisova,
  • Natalia Krisanova,
  • Arsenii Borуsov,
  • Roman Sivko,
  • Ludmila Ostapchenko,
  • Michal Babic and
  • Daniel Horak

Beilstein J. Nanotechnol. 2014, 5, 778–788, doi:10.3762/bjnano.5.90

Graphical Abstract
  • dextran [5][6]. Recently, immortalized cells of the MHP36 hippocampal cell line labeled with gadolinium rhodamine dextran in vitro were tracked in ischemia-damaged rat hippocampus in perfused brains ex vivo [7]. Contrast agents based on dextran-coated iron oxides are commercially available as blood pool
PDF
Album
Full Research Paper
Published 04 Jun 2014
Other Beilstein-Institut Open Science Activities