Search results

Search for "gelatin" in Full Text gives 37 result(s) in Beilstein Journal of Nanotechnology.

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • Franz diffusion cell system. Formulation of nanocrystal DCS and commercial DCS powder in enteric capsules Size 9 empty porcine hard gelatin capsules (Torpac) were used for the following experiments. The modified enteric capsules contained one of the nanocrystal forms or the commercial DCS powder, which
  • for enteric solid dosage coating and is used in this work for DCS enteric administration test. An amount of 5.66 g of Kollicoat MAE 30 DP was mixed with 0.34 g of propylene glycol for the enteric coating material, which was evenly brushed on the surface of the size 9 empty porcine hard gelatin
PDF
Album
Full Research Paper
Published 25 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • hydrogels (such as gelatin methacryloyl, chitosan/polycaprolactone, polyvinyl alcohol/chitosan, and polypyrrole-grafted gelatin) were combined to generate diverse combinations of nanocomposites for wound repair [156][157][158][159][160][161]. This strategy not only endows nanoantioxidants with topical
PDF
Album
Review
Published 12 Apr 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • electrical properties strongly depend on the conductive carbon concentration (Figure 4d). A similar EIS behaviour was observed in the literature for several different hydrogel-based structures [26][52][53][54]. For comparison, the impedance values of gelatin methacryloyl (GelMA), GO/GelMA, and r(GO/GelMA) at
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • -loaded gelatin nanoparticles imaged in the quantitative imaging mode with a JPK NanoWizard III in Milli-Q® water at 37 °C, as well as the extracted Young’s modulus map as previously described [22] (Figure 1). Takechi-Haraya et al. showed that for liposomes both methods deliver the same results [21]. The
  • or surface potentials are determined, we would suggest to prioritize the determination of the Young’s modulus. This is due to the advantage of comparable fast acquisition and the mapping option. From our own data on gelatin nanoparticles, we can say that introducing pause segments during the
  • convinced that elasticity as a formulation parameter can help to promote more nanoparticulate drug delivery systems to be translated to the clinics. (A) Height image of gelatin nanoparticles on a silica surface imaged in Milli-Q® water at 37 °C in the quantitative imaging mode. (B) A force–distance curve
PDF
Album
Perspective
Published 23 Nov 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • tumor site, showing facilitated diffusion through tumor tissue due to their smaller size and specific surface engineering [111]. Wong et al. developed a multistage system with facilitated tumor diffusive transport composed of 100 nm gelatin nanoparticles, capable of releasing 10 nm NPs from their
PDF
Album
Review
Published 22 Feb 2023

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • NPs and CS/DCX-PLGA NPs through an artificial mucus layer In order to evaluate the penetration capability of NPs, wells containing artificial mucus layer were treated with DCX-loaded NP formulations. Subsequently, NPs that had penetrated the mucus layer and moved into gelatin were measured using UV
  • acetate, dialysis cellulose tubing membrane (average flat width 25 mm, MWCO 14,000 Da), gelatin type B from bovine skin, mucine from porcine stomach (type II), diethylenetriaminepentaacetic acid (DTPA; min 99%, titration), and egg yolk emulsion were purchased from Sigma-Aldrich, USA. All other chemicals
  • then applied over the gelatin layer. Initially, a 10 percent (w/v) gelatin dispersion was made by heating 50 mL of ultrapure water on a magnetic stirrer to 60 °C, and then 1 mL of the dispersion was added to each well of the 24-well cell plates. The gelatin layer in the experimental model was cooled to
PDF
Album
Full Research Paper
Published 23 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • . A similar QCM response is also seen for gelatin. As physicochemical properties of BSA and gelatin are different, it was inferred that the chiral sensing effect of this system could be applied to various protein species. The authors further employed fluorescent titration measurements to study the
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • capacity in different directions, which naturally leads to a difference in the concentration of ions contained in the film material. These film materials include biological nanofibers (NFs) [85], porous polydopamine (g-PDA) [84], protein nanowires [86], and gelatin molecules [87], which yielded output
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • ], calcium sulfate and gelatin [135], gelatin and hydroxyapatite [136], and PLGA microparticles combined with PLA [137] are available in the scientific literature. Taking into consideration the shape and geometry of microneedles, they can be categorized as pyramids, cones, arrowheads, cylinders, bullets
PDF
Album
Review
Published 24 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • achieve higher osteogenic properties, scaffolds composed of nanocopper–zinc integrated with nanohydroxyapatite, gelatin, and chitosan were developed by the freeze-drying method. The scaffolds were developed with a diameter of 8 mm and thickness of 2.5 mm. The porosity ranges from 97.8 to 99.5% with a pore
  • antibacterial activity was observed against Staphylococcus aureus and Escherichia coli [95]. Melatonin-loaded TiO2 nanotubes were synthesized by Lai et al. (2017). Subsequently, using a spin-based layer-by-layer approach, chitosan and gelatin-based films were applied. Further, an in vitro cell interaction study
  • growth at 25 µg/mL. The bioactivity of the composites was evaluated by simulation studies of body fluids. The results show that the composites can form hydroxyapatite bone minerals crystals in a ratio of Ca/P 1.67 [70]. Huang et al. (2017) have created a zinc-incorporated chitosan/gelatin nanocomposite
PDF
Review
Published 29 Sep 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • nanoparticles intended to be used in drug delivery is of great interest. To this end, different potential formulations are developed since the particle elasticity is affecting the in vitro and in vivo performance of the nanoparticles. Here we present a method to determine the elasticity of single gelatin
  • nanoparticles (GNPs). Furthermore, we introduce the possibility of tuning the elastic properties of gelatin nanoparticles during their preparation through crosslinking time. Young’s moduli from 5.48 to 14.26 MPa have been obtained. Additionally, the possibility to measure the elasticity of single nanoparticles
  • . Keywords: atomic force microscopy; drug delivery; elasticity; gelatin nanoparticles; Young’s modulus; Introduction Developing nanoparticulate drug carriers for various diseases and application routes requires establishing controllable systems, matching the needs of the respective application to achieve
PDF
Album
Full Research Paper
Published 16 Aug 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • to those of E3. It was utilized for comparison with the formulations containing EE. Compression test on different surfaces The best formulations (E3, E6, E9, and G6) were mechanically evaluated in compression tests on PVC film, Parafilm M, gelatin, and porcine skin. The results for the compression
  • force of the best formulations are displayed in Table 4. The MNs did not yield total penetration of PVC film, Parafilm M, and porcine skin; however, it was verified that the applied force was sufficient to mark the substrates. All evaluated formulations displayed penetration of the gelatin substrate
  • compared with the formulations without extract and the standard. For Parafilm M, no significant differences were observed when comparing E3 and MNs without PRP, G6 and MNs without PRP, and MNs without PRP and the standard. For the analysis using gelatin as surface, only the difference between formulations
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • and growth, thus shortening the expansion process [30][31][32]. In this regard, Sulaiman et al. explored the 3D culture of MSCs on gelatin microspheres (GMs) in a dynamic culture system for the fast generation of a higher amount of MSCs and the improvement of their chondrogenic differentiation [31
  • the expressions of chondrogenic markers and appreciably repopulated the defective cartilage site compared to pellet culture and PVA fibers. In line with this, the application of a resveratrol–PLA–gelatin scaffold in a rat articular cartilage defect model promoted the repair of cartilage injury and had
  • a faster repair rate compared to a PLA–gelatin nanoscale scaffold [116]. Furthermore, to enhance biocompatibility, a 3D porous nanofiber scaffold made of gelatin and PLA was modified using CS [78]. The results demonstrated that the modified scaffold had appropriate mechanical properties and
PDF
Album
Review
Published 11 Apr 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • antioxidant peptides by proteases. The combination of liposomes or polymers with different payload materials has been reported, for example, PEG-modified liposomes loaded with resveratrol, layer-by-layer-coated gelatin nanoparticles, or Gelucire-based solid lipid and polymeric micelles [14][15][16][17][18][19
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • tailoring of TNTs are employed for delayed/controlled release of anti-inflammatory drugs. Chemical intercalation of the drugs inside the TNTs and the subsequent triggered release are other strategies applied for slow and controlled release [63]. Likewise, gelatin nps, along with the antibiotic vancomycin
  • alginate, gelatin, and chitosan to enhance strength and durability [70]. In another strategy to improve the bioactivity of titania scaffolds, alkaline phosphatase (ALP) was functionalized onto 3D TiO2 scaffolds based on a simple dip-coating method. ALP catalyzes the hydrolysis of organic phosphate that
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • common synthetic polymer membranes such as polycaprolactone (PCL), polyacrylonitrile (PAN), polyacrylic acid (PAA), polysulfones (PSF), polyimides (PI), polyvinyl alcohol (PVA), polystyrene (PS), polyethylene oxide (PEO), poly(vinylidene fluoride) (PVDF) and natural polymers such as gelatin, keratin
PDF
Album
Review
Published 31 Jan 2022

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • surfaces, such as titanium and polyallylamine [3][4][5], gelatin–nanogold [6], polyelectrolytes and arginylglycylaspartic acid peptides [7], or extracellular matrix proteins [5][8][9]. Especially on the nonphysiological surfaces of permanent implants, the settling of cells and the swift formation of large
PDF
Album
Full Research Paper
Published 12 Mar 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2021

Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system

  • Hiroaki Komuro,
  • Masahiro Yamazoe,
  • Kosuke Nozaki,
  • Akiko Nagai and
  • Tetsuo Sasano

Beilstein J. Nanotechnol. 2020, 11, 1685–1692, doi:10.3762/bjnano.11.150

Graphical Abstract
  • 25 μg/mL fibronectin solution (Wako) prepared in a 0.02% gelatin solution (Wako) in order to increase cell adhesion. The cells were grown in a humidified incubator at 37 °C containing 5% CO2. Cytotoxicity assay The cytotoxicity of HAp/pDNA complexes or endocytosis inhibitors was verified by an MTT
PDF
Album
Full Research Paper
Published 05 Nov 2020

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • conductivity values, i.e., 2700 S·m−1 for alginate, 900 S·m−1 for gelatin, and 300 S·m−1 for poly(vinyl alcohol), and the chitosan matrix discussed here yielded conductivity of 2900 S·m−1 [26]. The increase of the conductivity in chitosan films can tentatively be ascribed to the presence of physically adsorbed
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • ) [44]. Cells were grown on 0.1% gelatin (bovine origin; Sigma, Switzerland) in Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies, UK) substituted with 10% heat-inactivated fetal bovine serum (FBS; Life Technologies, UK) and penicillin (100 units/mL) – streptomycin (100 µg/mL) (Life Technologies
  • ) [10][46]. Immunofluorescence staining and transmission electron microscopy After PCL- or PLLA-NP exposure, cells grown in 0.1% gelatin-coated 96-well plates or on coverslips were fixed with cold 4% paraformaldehyde for 20 min at room temperature. Following two washing steps with Dulbecco’s phosphate
  • with an Apotome 1 (Carl Zeiss Vision Swiss AG, Feldbach, Switzerland). To further study uptake of PCL-, PLLA- and Au-NPs, rBCEC4 cells were seeded at 150,000 cells (24- well plate), coated with 0.1% gelatin and were incubated in cell culture medium at 37 °C and 5% CO2 until full confluence was reached
PDF
Album
Full Research Paper
Published 25 Apr 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • twinned ZnO NCs. Now we compare our growth method and quality of twinned ZnO NCs with similar structures reported previously. Greer et al. [15] have employed gelatin as the structure-directing agent to fabricate twinned ZnO NCs. The removal of embedded gelatin in NCs requires calcination at 600 °C, which
PDF
Album
Full Research Paper
Published 24 Jan 2019

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • : Collagen is a basic component of the periodontium and plays an important role in the function of the periodontal unit. Therefore, coating with collagen/gelatin has been applied to enable dental implants to positively interact with peri-implant tissues. Although the micro/nanoscale topography is an
  • important property of the surface of dental implants, smaller collagen/gelatin surface patterns have not been sufficiently developed. Furthermore, only few reports on the behavior of cells on gelatin surfaces with different patterns and sizes exist. In this study, we developed micro/nanometer-scaled gelatin
  • surfaces using genipin crosslinking, with the aim of understanding the use of patterning in surface modification of dental implants. Results: Grooves, holes, and pillars, with widths or diameters of 2 µm, 1 µm, or 500 nm were fabricated using a combination of molding and genipin crosslinking of gelatin
PDF
Album
Full Research Paper
Published 11 Jun 2018

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties

  • Rasha Ghunaim,
  • Maik Scholz,
  • Christine Damm,
  • Bernd Rellinghaus,
  • Rüdiger Klingeler,
  • Bernd Büchner,
  • Michael Mertig and
  • Silke Hampel

Beilstein J. Nanotechnol. 2018, 9, 1024–1034, doi:10.3762/bjnano.9.95

Graphical Abstract
  • superconducting quantum interference device (MPMS-XL SQUID) magnetometer from Quantum Design (San Diego CA, USA). The samples were filled inside gelatin capsules, and the diamagnetic contribution of the sample holder and the empty CNT was subtracted. Results and Discussion Morphology and structure The morphology
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2018
Other Beilstein-Institut Open Science Activities