Search results

Search for "hepatocytes" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • CD163 is probably within the β chain of Hb (binding of Hb to Hp via a binding site within the Hb α chain) [27]. Furthermore, not only cells of the monocyte/macrophage lineage appear to be involved in sequestering Hb, but also hepatocytes [25][26]. It can be speculated that the same could be true for
  • after a short while in the MRI scan [24]. While the authors hypothesized that the HBOC was taken up by CD163-expressing Kupffer cells/macrophages, Chow et al. reported that when isolated rat livers were perfused with a HBOC solution, hepatocytes also took up abundant hemin, as determined by heme
  • oxygenase-1 expression [25]. Goldfischer et al. observed immunohistochemically the presence of Hb in phagocytic but also hepatocytic lysosomes [49]. Hepatocytes, however, do not express CD163; therefore; they must have a currently still unknown mechanism potentially for Hb recognition, but surely for HBOC
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • high concentration of chloride ions catalyse a controlled recrystallization of AgNPs. They observed structures similar to the forms presented in Figure 2b. As these large cubic and ball-like structures were not located inside hepatocytes, but extracellularly, we concluded that the crystallization of
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • -vinylimidazole) chains modified with aminoethyl groups demonstrated excellent DNA binding ability in synergy with lactosylated poly(ʟ-lysine). This system was found to exhibit excellent gene transfection ability specifically in hepatocytes through interactions with the asialoglycoprotein receptor expressed on
PDF
Album
Full Research Paper
Published 17 Feb 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • of 100 nm silica nanoparticles incubated with human serum were found to interact with their corresponding receptors, low-density lipoprotein receptor and Fc-gamma receptor I, respectively [17]. Similarly, lipid nanoparticles were efficiently targeted to the hepatocytes upon adsorption of apoE on
PDF
Album
Review
Published 14 Feb 2020

Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

  • Yue Zhang and
  • Wan-Xi Yang

Beilstein J. Nanotechnol. 2016, 7, 675–684, doi:10.3762/bjnano.7.60

Graphical Abstract
  • stress found that without shear stress, the cellular uptake/association of both PDA-coated liposomes (LPDA) and LPDA-PEG for hepatocytes were quite similar, while myoblasts preferred to internalize/associate with LPDA. However, under shear stress, hepatocytes showed its preference to LPDA after 30 min
PDF
Album
Review
Published 06 May 2016

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • to their negatively charged, sulfate rich shell. Organic dPGS amine accumulated in the cytoplasm of hepatic Kupffer cells (c, arrow). These liver specific macrophages are identified by their comma-shaped nuclei and their lining of hepatic sinusoids. Adjacent hepatocytes (c, asterisks) appear as light
  • were clearly associated with the red pulp but not within lymphoid follicles (spared dots). (c) Light microscopic autoradiography with numerous radioactive decay-induced signals over Kupffer cells (arrows) in the liver of a mouse (left panel). Signals were sparse in adjacent hepatocytes with larger
PDF
Album
Review
Published 23 Jan 2015

The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Markus Heine,
  • Christian Waurisch,
  • Gordon M. Stachowski,
  • Stephen G. Hickey,
  • Alexander Eychmüller,
  • Jörg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 111–123, doi:10.3762/bjnano.6.11

Graphical Abstract
  • the Zn pool was observed. Confocal microscopy of rat liver cryosections (prepared 2 h after intravenous injection of polymer-coated Qdots) revealed a colocalization with markers for Kupffer cells and liver sinusoidal endothelial cells (LSEC), but not with hepatocytes. In J774 macrophages, fluorescent
  • colocalize with LSECs as well as with KCs. To date, polymer-coated Qdots were not found in hepatocytes. Since the surface chemistry of the Qdots and SPIOs is identical when coated with the amphiphilic polymer, the cell distribution should be similar. Intracellular processing of Qdots Further insight into the
  • (LSECs, with anti-CD68) was performed. Regions outlined by the white boxes are magnified in the lower panels. Nanoparticles can be found located in endothelial cells (A) as well as in Kupffer cells (B), but not in hepatocytes. Scale bar: 20 µm for the upper panel, and 5 µm for the magnified images
PDF
Album
Full Research Paper
Published 09 Jan 2015

The fate of a designed protein corona on nanoparticles in vitro and in vivo

  • Denise Bargheer,
  • Julius Nielsen,
  • Gabriella Gébel,
  • Markus Heine,
  • Sunhild C. Salmen,
  • Roland Stauber,
  • Horst Weller,
  • Joerg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 36–46, doi:10.3762/bjnano.6.5

Graphical Abstract
  • a role also in a specific uptake for example in hepatocytes. Discussion Many experimental techniques have been used to investigate the binding of proteins to nanoparticles and some models have been proposed to rationalize the experiments [10][32]. The most accepted view on protein corona formation
PDF
Album
Full Research Paper
Published 06 Jan 2015

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • process that is dependent on the LDL receptor and apolipoprotein E, by hepatocytes. Gene expression analysis of pro-inflammatory markers such as tumor necrosis factor alpha (TNFα) or chemokine (C-X-C motif) ligand 10 (Cxcl10) indicated that 48 h after injection internalized nanocrystals did not provoke
  • pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications. Keywords
  • : hepatocytes; inflammation; Kupffer cells; liver sinusoidal endothelial cells; nanoparticle toxicity; nanoparticle uptake; quantum dots; superparamagnetic iron-oxide nanocrystals; Introduction The superior optical properties of QDs compared to organic dyes render them promising candidates for the demands of
PDF
Album
Full Research Paper
Published 02 Sep 2014
Other Beilstein-Institut Open Science Activities